Additional Site Investigation Report

Subject Site:

Former Brickyard Property Sexton Avenue & Lincoln Avenue Porter, IN 46304 State Cleanup #000000352

Prepared For:

Micheal Barry, Director of Development Town of Porter 303 Franklin Street Porter, IN 46304

Prepared By:

Amereco, Inc.

Project No. 23.2078

December 8, 2023

December 8, 2023

Michael Barry, Director of Development Town of Porter 303 Franklin Street Porter, IN 46304

Re:

Additional Site Investigation Former Brickyard Property Beam Street & Sexton Avenue Porter, IN 46304 Project #23.2078

Dear Mr. Barry:

In accordance with your authorization, we have performed an Additional Site Investigation (ASI) on the Former Brickyard Property located at the southwest corner of Beam Street & Sexton Avenue in Porter, Porter County, Indiana 46312, the *property*. The ASI was conducted to further characterize Site conditions and evaluate potential exposure risk prior to redevelopment of the Former Brickyard Property.

ASI activities were conducted between September 18 and 22, 2023 and included the collection of 19 surface soil samples. Soil samples were collected via hand tooling. Soil samples were submitted for laboratory analysis of arsenic and lead. Conclusions pertaining to the current Site conditions can be found in *Section 5.3* and recommendations can be found in *Section 5.4*.

We appreciate the opportunity to provide you this service. If you have any questions or comments regarding this report, or if we can be of any additional service, please call.

Respectfully submitted,

Ross Yeater Project Manager

Zachary Heine, CHMM Director of Operations

Table of Contents

Acr	ony	yms	1
1.	In	ntroduction	2
1	.1	Purpose	2
1	.2	Scope of Services	2
2.	В	Background	3
2	.1	Site Description & Features	3
2	.2	Physical Setting,	3
2	.3	Site History & Land Use	3
2	.4	Adjoining Property Use	4
2	.5	Summary of Previous Environmental Reports	4
3.	Α	Additional Site Investigation	6
3	.1	Conceptual Site Model & Sampling Plan	6
3	.2	Surface Soil Sampling	6
3	.3	Chemical Analyses	7
4.	S	Soil Analytical Results	8
5.	D	Discussion of Findings & Conclusions	9
5	.1	Representative Concentrations	9
5	.1	Conceptual Site Model1	0
5	.3.	Conclusions1	1
5	.4.	Recommendations1	1
6		References	3
Ар	pe	endix	
X.1		FiguresAppendix A	
X.2		Tabulated Sample Results, Representative Concentration Summaries, Comprehensive Soil Sam Summaries, ProUCL Output Datasheets, GPS Location Coordinate Data	ıple
X.3		Laboratory ReportsAppendix C	

Acronyms

ASI	Additional Site Investigation
ASTM	American Society for Testing and Materials International
bgs	Below Ground Surface
COC	Contaminant(s) of Concern
CSPL	Commercial Soil Published Level
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
GPR	Ground Penetrating Radar
IDEM	Indiana Department of Environmental Management
IDNR	Indiana Department of Natural Resource
LTC	Long Term Commercial
LTR	Long Term Residential
NRCS	Natural Resource and Conservation Service
PAHs/PNAs	Polynuclear Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PID	Photoionization Detector
PL	Published Level
R2	Risk-based Closure Guide
RCG	Remediation Closure Guide
RCRA	Resource and Conservation Recovery Act
REC	Recognized Environmental Condition
RSPL	Residential Soil Published Level
SCP	State Cleanup Program
SMP	Soil Management Plan
STE	Short Term Excavation
TPH	Total Petroleum Hydrocarbons
U.S.	United States
USCS	Unified Soil Classification System
VFC	Virtual File Cabinet
VOCs	Volatile Organic Compounds
XSPL	Excavation Soil Published Level

1. Introduction

Amereco, Inc., d/b/a Amereco Engineering (Amereco) prepared this Additional Site Investigation (ASI) Report on behalf of the Town of Porter for the Former Brickyard Property located at the corner of Sexton Avenue & Lincoln Avenue in Porter, Porter County, Indiana 46304 (Site). This ASI was conducted in accordance with the IDEM *Risk-based Closure Guide* (R2), effective July 8, 2022, and documents the objectives and investigation activities and presents findings and conclusions.

1.1 Purpose

The primary purpose of this ASI was to further evaluate known lead and arsenic impacts to surficial soils (0- to 2-foot below ground surface (bgs) to facilitate the evaluation of remedial options and risk management strategies for safe redevelopment of the Site. The findings and conclusions of this report are intended to be utilized for the development of a Site-specific Soil Management Plan (SMP).

1.2 Scope of Services

The specific scope of work conducted for this ASI included a review of existing available information, field exploration, sampling, contaminant analysis, evaluation of results, and a discussion regarding conclusions and findings.

ASI activities included the advancement of 19 soil borings via a hand auger to a maximum depth of approximately 1-foot bgs, with the collection of one soil sample from each location. Sample locations and laboratory analyses were selected based on a review of historical information described in Section 2.5.

2. Background

2.1 Site Description & Features

The Site consists of a 24.65-acre densely wooded lot located northwest of the intersection of Sexton Avenue and Lincoln Avenue in Porter, Porter County, Indiana 46304. The Site does not have a street address but corresponds to Porter County parcel #64-03-35-177-001.000-026. The Site is bound to the south by a Norfolk Southern railroad, to the west by wooded land and Lake Florence, to the north by West Beam Street, and to the east by Sexton Avenue. A Site Location map is provided as Figure 1 in Appendix A. A Site map depicting the entire extent of the Site is provided as Figure 2.

The Site is generally referred to as the Former Brickyard Property and is located within an area of mixed industrial, commercial, and residential properties. The Site is currently vacant and naturally vegetated except for portions of the Site used for storage by the Town of Porter. The Site is accessible from the northwest corner off of West Beam Street or the southeast off of Sexton Avenue and Lincoln Street.

2.2 Physical Setting,

The Site is located in Section 35, Township 37N, Range 6W of the 2nd Principal Meridian in Porter County, Indiana. The average elevation for the Site is 636-feet above sea level, although numerous berms and depressions are present throughout the Site. The regional groundwater flow for the Site is assumed primarily north towards Lake Michigan, located approximately 2.6-miles away, as identified by the Potentiometric Surface Map of The Unconsolidated Aquifers of Porter County, Indiana. Groundwater flow direction on-Site is estimated to flow west-northwest toward the East Arm Little Calumet River and Lake Michigan beyond. However, previous on-Site investigations have not included groundwater flow modeling and groundwater flow may be impacted by nearby drainage ditches, city utilities, and local bodies of water.

2.3 Site History & Land Use

Based on the historical documentation reviewed, the Chicago Hydraulic Press Brick Company operated at the Site beginning in the early 1890s until its closure in 1925. The north rectangular-shaped portion of the building, labeled "clay sheds" was demolished between 1899 and 1905, as evidenced by historical Sanborn maps. The 1912 and 1922 Sanborn maps show a large rectangular warehouse building connected to a rail spur entering the property from the southeast corner. By 1938, all facility buildings were demolished, as evidenced by historical aerial photographs. The facility was located on the south-central portion of the Site and consisted of a brickmaking plant containing large kilns on the south and west ends of the hydraulic production area near the south-central area of the Site. Two railroad spurs entered the Site from the southeast, one of which ran through a storage building on the east side of the plant and the other along a coal and brick storage shed to the south. A 60-gallon capacity gasoline underground storage tank (UST) was located north of the plant building, just east of a 120,000-gallon water reservoir tank. Additionally, several small above-ground oil tanks and one large in-ground oil tank were located west of the main plant across a ditch. Approximate historical building locations are depicted on Figure 2.

Brick production at the facility ceased in 1925 due to material resource shortages, notably clay, which was reportedly mined from the Site and resulted in significant re-working of surface soils, grade changes, and backfilling with various amounts of gravel, brick, slag, cinders, glass, etc. The majority of the Site has become densely wooded except for several small areas used by the Town of Porter for storage. Several

inches of topsoil sediment have accumulated at the surface since being vacated in 1925. The State Cleanup Program (SCP) ID for the Site is #0000-00-352 and was assigned "inactive" status in 2012 pending initiation of redevelopment by the Town of Porter.

2.4 Adjoining Property Use

Current Use of Adjoining Properties					
Direction Use					
North	Yost Elementary School (100 W. Beam St.)				
North	Porter Town Office / Porter Fire Department (550 W. Beam St.)				
Northeast	Residential				
East	Residential				
Southeast	Agricultural and Residential				
South	Agricultural				
Southwest	Agricultural				
West	Naturally vegetated easement, Lake Florence				
Northwest	I-94 Right-of-Way, followed by Residential				

2.5 Summary of Previous Environmental Reports

Phase I ESA – McMahon Associates, Inc. – January 20, 1994

An Environmental Site Assessment (ESA), dated January 20, 1994, was performed on the Site by McMahon Associates, Inc. The ESA did not identify any recognized environmental conditions (RECs) in connection with the Site. It should be noted that approximately 12-inches of snow cover significantly limited the ability of field personnel to observe Site conditions, specifically surface coverage.

Phase I ESA – Weaver Boos Consultants, LLC – July 5, 2006

A Phase I ESA, dated July 5, 2006, was performed on the Site by Weaver Boos Consultants, LLC. The Phase I ESA identified the following RECs in connection with the Site:

• The former presence of oil tanks on the west side of the former kiln area was identified for potential petroleum contamination of soil and/or groundwater.

Phase II ESA - Weaver Boos Consultants, LLC - October 7, 2009

A Preliminary Phase II ESA, dated October 7, 2009, was performed on the Site by Weaver Boos Consultants, LLC on behalf of the Town of Porter. As part of the Phase II ESA, seven soil borings were advanced to approximate depths of 16- to 24-feet bgs. A total of three surface soil, three subsurface soil, and three groundwater samples were collected. Surface soil samples were analyzed for metals, polynuclear aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons – extended range organics (TPH-ERO), subsurface samples were analyzed for PAHs and TPH-ERO, and groundwater samples were analyzed for volatile organic compounds (VOCs) and were compared to then-applicable Risk Integrated System of Closure (RISC) closure levels. The Phase II ESA noted the following conclusions:

No petroleum impacts were identified in the vicinity of historical on-Site oil storage.

- PAHs, lead, and arsenic were identified in surface soil on the southwest portion of the property above RISC closure levels. Elevated COC concentrations appear to be connected to dark-colored surficial fill, which covers a significant area along the south portion of the Site.
- Site conditions warrant additional characterization upon commencing redevelopment of the Site.

Phase II ESA – Weaver Boos Consultants, LLC – September 12, 2011

A Phase II ESA, dated September 12, 2011, was performed by Weaver Boos Consultants, LLC to further characterize environmental conditions identified in the 2006 Phase I ESA and the 2009 Preliminary Phase II ESA. Nineteen soil borings were advanced and six groundwater samples were collected. Analyses included arsenic, lead, TPH-ERO, and PAHs. The conclusions of the 2011 Phase II ESA were:

- No contaminant conditions warranting immediate action were identified. Contaminants of concern (COCs) appeared to be limited to PAHs, arsenic, and lead in surface soil.
- No groundwater impairments were identified in the Site subsurface, and migration from soil to groundwater was not suspected to be occurring.
- Redevelopment of the approximate 6-acre portion on the south of the property will require mitigation
 of potential exposure to surface soil contamination for commercial use. Potential exposure to
 impacted surface soil can be mitigated by excavation and disposal, consolidation, imposing
 engineered barriers, or a combination of mitigation measures.

Phase II ESA - Amereco, Inc. - July 26, 2021

A Phase II ESA, dated July 26, 2021, was performed by Amereco, Inc. to further characterize Site conditions and evaluate potential exposure risk in anticipation of redevelopment. The scope of the assessment included further characterization of contaminated areas previously identified by Weaver Boos Consultants, LLC, and evaluation of the southeast portion of the Site used for storage of fill material by the Town of Porter. A total of 25 hand auger soil borings were advanced and 28 soil samples were collected. Analyses included VOCs, PAHS, polychlorinated biphenyls (PCBs), and Resource Conservation and Recovery Act (RCRA) 8 metals.

The conclusions of the 2021 Phase II ESA were:

- PAH, arsenic, and lead concentrations were identified in shallow soils (0- to 4-feet bgs) near the former brickmaking facility in exceedance of then-applicable IDEM Remediation Closure Guide (RCG) 2021 screening levels. PAH contamination was limited to minor exceedances of RCG Residential Direct Contact (RDC) screening levels while arsenic and lead concentrations were identified in exceedance of RCG Commercial/Industrial Direct Contact (C/IDC) and Excavation Worker Direct Contact (EDC) screening levels, respectively. Arsenic and lead contamination was generally associated with observed fill material in localized areas of the Site.
- Later uses of the southeast portion of the Site for storage of fill material stockpiles by the Town of Porter were determined not to have significantly impacted the Site.

3. Additional Site Investigation

3.1 Conceptual Site Model & Sampling Plan

This site model considers the potential distribution of contaminants based on their properties, behavior, fate, and transport characteristics. A conceptual site model (CSM) and sampling plan were developed utilizing reports discussed in Section 2.5 of this report.

The preliminary CSM developed for the Site and utilized in preparation of a sampling plan for this ASI identified surficial soils as the primary exposure pathway to Site occupants. Groundwater impacts were not identified during the previous Weaver Boos assessments in 2009 and 2011; therefore, groundwater was not assessed as part of this ASI. Due to the lack of elevated VOC concentrations being identified in previous sampling events at the Site, vapor concerns are not evident. Subsurface soil conditions are similar to those of surface soils; however, as the Site is predominately vacant and there are no pending development plans. Thus, the vapor exposure pathway is not complete.

The sampling plan for this ASI was designed with consideration of known lead and/or arsenic contamination in surface soils originating from historical brickyard operations and fill observed on-Site. Additional soil sampling was conducted during this ASI in the vicinity of previously identified areas of elevated lead and/or arsenic concentrations to further characterize the lateral extents of the impacted areas.

3.2 Surface Soil Sampling

Amereco collected a total of 19 surface soil (0- to 1-foot bgs) samples on September 18 and 22, 2023. Soil samples were collected via hand auger or golf hole cutter to adequately recover representative soils beneath topsoil. Soils were field characterized generally into three categories: sand, clay, or fill (soil containing gravel, brick, slag, cinders, glass, etc.).

In an effort to delineate the lateral extent of contamination, sample locations were spaced approximately 20-lateral feet in each principal direction from locations where elevated lead and/or arsenic concentrations were previously identified. Geographical sample locations were recorded in the field using a Trimble GPS Geo7X 7000 handheld unit.

Disposable nitrile gloves were worn by sampling personnel and were changed between each sample location. All soil samples were collected within minutes of retrieving the sample core from the ground and placed into labeled, laboratory-supplied containers appropriate for the analysis. The following sample containers were utilized based on sample location and the selected analysis:

Sample Collection Information – Surface Soil Samples						
Sample Analysis Sample Container Preservative Hold Time						
Arsenic and Lead	1 x 4-oz Plastic Vial	Non-preserved, 4° C	180 days			

Following collection, all samples were immediately placed into sealed bags and placed on ice or refrigerated (as necessary) until transported to the laboratory by either Amereco staff or by laboratory courier. The

sampling equipment was decontaminated before use and between each soil boring location using Alconox® detergent and distilled water. Soil sample locations are depicted on Figure 2 and general soil lithology information is provided on tabulated analytical results in Appendix B.

3.3 Chemical Analyses

Laboratory analyses were conducted by Sterling Labs, 2242 W. Harrison Street, Chicago, IL 60612, and Accurate Analytical Testing LLC, 30105 Beverly Road, Romulus MI 48174. The chemical testing plan was developed based on previously identified COCs present in the media collected. A completed chain of custody accompanied each sample shipment to the laboratory. Chains of custody documenting sample collection/handling, sample collection times, individuals involved in the chain of sample possession, and a record of requested analytical parameters can be found in Appendix C. The following table summarizes the sample analysis and corresponding United States Environmental Protection Agency (US EPA) methods:

Target Analytes for Samples					
Sample Analysis Media Methodology					
Arsenic and Lead	Soil	SW-846 6020A/SW-846 3050B			

4. Soil Analytical Results

Soil analytical results from this ASI, as well as a summary of historical soil analytical results (2009, 2011, and 2021 ESAs) contrasted against applicable IDEM R2 2023 Published Levels (PLs) can be found in Appendix B in tabular format. Analytical results for surface soil samples collected during this ASI are illustrated on Figure 3 and a comprehensive summary of all known arsenic and lead analytical results are illustrated on Figures 5a and 5b. The following table summarizes samples and contaminants identified during this ASI in exceedance of applicable IDEM R2 2023 PLs:

Soil Exceedances – IDEM R2 Published Levels						
Sample ID	Depth (ft. bgs)	Primary Lithology	Arsenic	Lead		
S23-1	0-1	Clay	27	336		
S23-2	0-1	Sand	49	497		
S23-3	0-1	Sand	82	357		
S23-4	0-1	Fill	24	198		
S23-5	0-1	Fill	18	363		
S23-9	0-1	Clay	12	16.7		
S23-10	0-1	Fill	21	NA		
S23-11	0-1	Fill	25	NA		
S23-12	0-1	Fill	51	NA		
S23-13	0-1	Fill	83	<u>2,220</u>		
S23-14	0-1	Fill	150	409		
S23-15	0-1	Fill	31	421		
S23-16	0-1	Sand	14	205		
S23-17	0-1	Fill	62	412		
S23-18	0-1	Fill	45	855		
IDEM R2 Long Term Residential (LTR) PL 10 400						
IDEM R2 Lo	30	800				
	nort Term Excava	tion (STE) PL	900	<u>1000</u>		

Notes: Results and IDEM R2 Published Levels in mg/kg or ppm. NA = Not Analyzed.

5. Discussion of Findings & Conclusions

This ASI was conducted in accordance with the methods and procedures outlined in the IDEM R2. While the ASI sampling plan was intended to evaluate the lateral extents of isolated areas of elevated arsenic and lead concentrations, analytical results revealed that elevated surficial impacts are more prevalent throughout the vicinity of the former brickmaking facility. Therefore, direct contact exposure risk Sitewide was evaluated by spatially grouping all available surface soil sampling points with consideration of proximity to the former facility. Methods for determining risk evaluation areas are described in the following sections.

5.1 Representative Concentrations

Representative concentrations of arsenic and lead were calculated using methods recommended in *Section* 3.2.2.1 Determining Representative Concentrations in Soil of the IDEM R2, utilizing current and historical soil sampling data from impacted areas. Since the contamination appears to be the result of chronic deposition of unsuitable fill over time, and not acute release events associated with single-point sources, this methodology provides an evaluation of risk over an entire decision unit without giving undue weight to the highest (or lowest) observed concentrations.

Based on the findings of this ASI and previous investigations, elevated arsenic and lead concentrations appear to be generally limited to the top 2-feet of soil areas associated with former on-Site operations. Limited subsurface investigations have occurred due to the dense vegetation on-Site; however, based on these findings, elevated concentrations of PAHs appear to be generally limited to subsurface soils (2- to 4-feet bgs) and in areas that are generally free of heavy fill material, primarily on the southeast corner of the Site. Known soil arsenic, lead, and PAH analytical results contrasted against applicable IDEM R2 2023 PLs can be found in Appendix B in tabular format.

The Site has been divided into two areas, which are further subdivided into surface soils and subsurface soils, thus providing four decision units:

- Soil Decision Unit 1 Former primary area of operation, including the main brickmaking facility building and immediate surrounding area. Decision Unit 1 is generally defined as the south end of the property where historical brickmaking activities occurred.
 - a. Surface Soils (1a) The surface soil (0- to 2-feet bgs) is a combination of organic, black topsoil and fill (ash, cinders, slag, etc.).
 - b. Subsurface Soils (1b) The subsurface soil (2- to 4-feet bgs) is generally identified as loamy mixtures of clay and sand underlain by fine to medium grained sand, although fill material is present in areas west of the former facility.
- Soil Decision Unit 2 Surrounding the former primary area of operation. This area is defined as an
 area of the Site that was not heavily developed, yet some soil disturbance is suspected given the
 Site history and varying elevation. Decision Unit 2 generally corresponds to the north area of the
 Site.
 - a. Surface Soils (2a) The surface soil (0- to 2-feet bgs) is a combination of organic black topsoil, sand, and clays.
 - b. Subsurface Soils (2b) Overall, this area of the Site has little to no evidence of fill materials and consists predominately of native soils.

The representative arsenic concentrations were calculated as a 95% upper confidence limit (UCL) value generated by using the US EPA ProUCL 5.2.00 software. Representative lead concentrations were

calculated as the arithmetic mean, as IDEM and US EPA published levels for lead are derived using central tendency parameters. Concentration values for samples identified below laboratory reporting limits (LRLs) were entered as one-half the LRL (i.e., <1.8 was entered as 0.9). Amereco used the best applicable statistical tests recommended by ProUCL based on population distribution characteristics. Calculated representative concentration (UCL) values are summarized as follows:

Representative Concentrations Summary							
Decision Unit	Contaminant of Concern	IDEM R2 LTR PL (mg/kg)	IDEM R2 LTC PL (mg/kg)	IDEM R2 STE PL (mg/Kg)	Representative Concentration (mg/Kg)		
Decision Unit 1a -	Arsenic	10	30	900	38.0		
Surface Soils	Lead	400	800	1,000	341.4		
Decision Unit 2a -	Arsenic	10	30	900	7.3		
Subsurface Soils	Lead	400	800	1,000	25.4		
Decision Unit 1b –	Arsenic	10	30	900	22.1		
Surface Soils	Lead	400	800	1,000	132.6		
Decision Unit 2b –	Arsenic	10	30	900	12.1		
Subsurface Soils	Lead	400	800	1,000	32.6		

The representative arsenic concentrations exceed the IDEM R2 Long Term Commercial (LTC) PL in Decision Unit 1a and the IDEM R2 Long Term Residential (LTR) PL in Decision Units 1b and 2b.

5.1 Conceptual Site Model

Based on the results of this ASI, the extent of arsenic and lead contamination in on-Site soils have been defined. Contaminants primarily exist in surface soils (0- to 2-feet bgs) and subsurface soils (greater than 2-feet bgs) in the vicinity of the former brickmaking facility (Decision Units 1a and 1b). Arsenic and lead concentrations are closely associated with areas of fill material containing varying amounts of fly ash, coal cinders, brick, slag, and other non-native materials. While primarily surficial, some subsurface areas of fill material have been identified at depths greater than 2-feet to the west of the former facility. The fill material has been overlain by a few inches of accumulated organic soil and foliage making up the current forest floor. Subsurface investigations at the Site have been limited due to dense vegetation and topographic elevation changes.

Concentrations of benzo(a)pyrene and bibenz(a,h)anthracene above residential levels have been identified separate from fill material near the southeast corner of the Site, in an area used by the town of Porter for leaf and brush storage. The area was turned into a rough drive by using asphalt millings and gravel, which may be contributing to the observed PAH concentrations. Benzo(a)pyrene concentrations above residential levels have been identified in surface soils west of the former facility and appear to be related to areas of significant fill material impacts.

Groundwater contamination was not assessed during this ASI. However, based on results of previous assessments, depth to groundwater ranges from approximately 11.4- to 16.1-feet bgs and no significant groundwater impacts have been identified. No groundwater sampling has been conducted since the 2011

Weaver Boos Phase II ESA. Furthermore, no evidence currently exists to suggest that surface impacts are migrating to groundwater.

5.3. Conclusions

Based on the findings of this ASI, the following professional opinions and conclusions have been formed regarding current Site conditions.

Two areas of elevated arsenic and lead concentrations were identified to the west of the former facility prior to this ASI. The objective of this ASI was to evaluate the horizontal extent of each area of elevated arsenic and lead on-Site. However, a review of the current ASI sampling data indicated that elevated arsenic and lead concentrations were more widespread. Therefore, four decision units were developed using a combination of historical Site operations, observed Site conditions, and spatially clustered datasets to evaluate the overall lateral distribution of contaminants in each unit. Statistical analyses were performed on arsenic data (95% Upper Confidence Limit (UCL)) and lead data (arithmetic average) to determine representative concentrations across Decision Units.

Overall, elevated concentrations of arsenic are associated with areas of Decision Units 1a and 1b where fill material is observed (slag, cinders, coal, glass, and brick fragments). The horizontal distribution of fill material varies but is generally present around the former brickmaking facility in the center of the Site and along the south property boundary. The vertical distribution also varies due to extensive disruption and reworking of surface soils during brickmaking, but the impact is generally limited to the top 2-feet of soil, as indicated on site investigation soil boring logs and field lithology descriptions. Lateral extents of areas impacted by fill material were estimated using lithology and sampling data in conjunction with topographic features indicating disturbed surface soils.

The representative concentration for arsenic in subsurface Decision Unit 1b in the former facility exceeds residential levels, but the arsenic concentrations for this unit appear to be associated with background levels. The representative lead concentrations for all Decision Units were below the IDEM R2 PL, however, localized "hotspots" exist (i.e., the areas used in designing the sampling plan for this ASI). As discussed above, arsenic contamination is directly associated with fill material, and arsenic concentrations identified in areas free of fill material are likely associated with indigenous background levels.

Therefore, the arsenic direct contact exposure pathway to surface soils within Decision Unit 1a is of greatest risk to future Site occupants. All soil containing fill material within Decision Unit 1a, as depicted on Figure 4, should be treated as exceeding the arsenic IDEM R2 LTC PL. Soils within Decision Units 1b and 2b and free of fill material should be interpreted as falling within the typical background range for arsenic and do not represent a hazard greater than typical indigenous soils of Northwest Indiana.

5.4. Recommendations

Due to the limited use of the Site, future unknown development, and primary exposure risk, it is our professional recommendation that a Soil Management Plan (SMP) be prepared. This document shall ensure proper protection for the current use, while providing minimum guidelines for future Site redevelopment, ensuring safe handling of fill-impacted soils.

Furthermore, evaluation of Site conditions and the SMP are recommended prior to redevelopment to ensure that future use of the Site does not present additional risk to human health and the environment. Additional engineering and/or institutional controls may be necessary to ensure Site impacts do not pose a risk to human health and the environment.

6. References

The following references were used in the preparation of this report:

ASTM International (ASTM), Designation E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

ASTM International (ASTM), Designation E1903-97, Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

ASTM International (ASTM), Designation E2600-15, Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions.

Department of Natural Resources (DNR), *Potentiometric Surface Map of The Unconsolidated Aquifers of Porter County*, Indiana, May 2015,

https://www.in.gov/dnr/water/files/09_Lake_County_UNC_PSM_map.pdf.

Indiana Department of Environmental Management (IDEM), *Background Lead and Arsenic Surface Soil Levels*, Indianapolis, Indiana, June and July 2017,

https://www.in.gov/idem/cleanups/files/tech_guidance_pb_ as_pah_indy.pdf

Indiana Department of Environmental Management (IDEM), *Draft Vapor Intrusion Pilot Program Guidance*, April 26, 2006.

Indiana Department of Environmental Management (IDEM), *Re: Further Site Investigation Request*, February 8, 2012, Virtual File Cabinet Document ID #64962173.

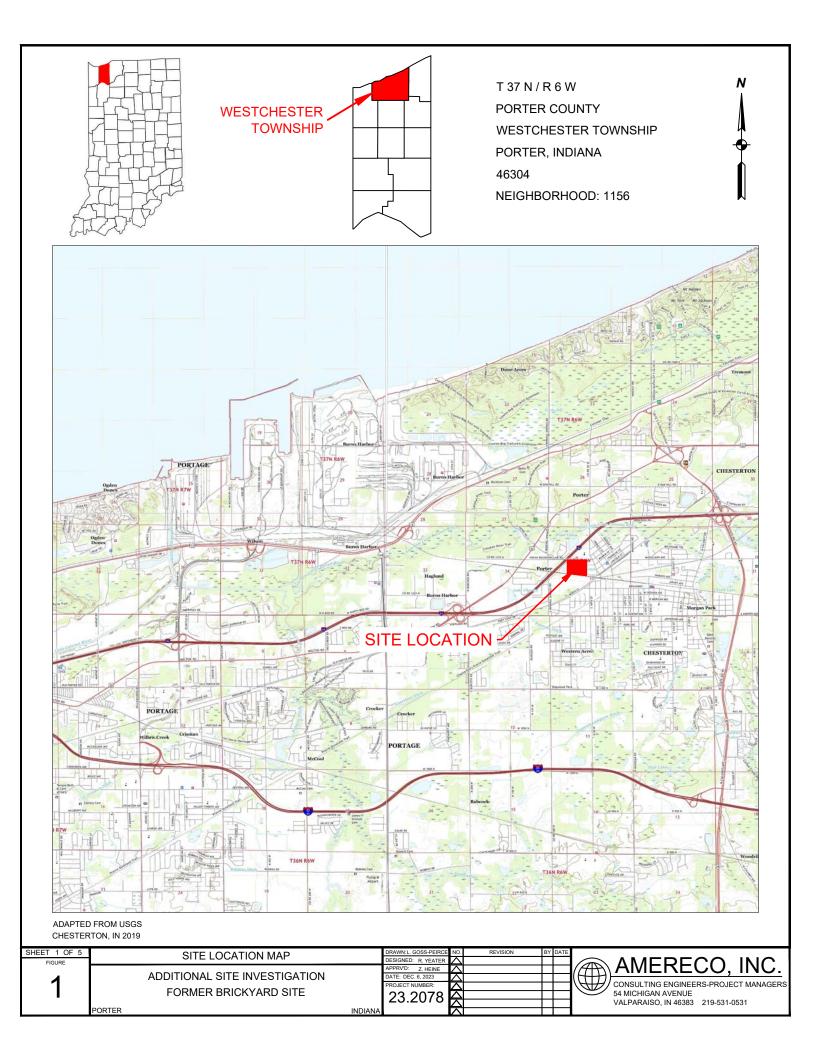
Indiana Department of Environmental Management (IDEM), Remediation Closure Guide, July 9, 2012.

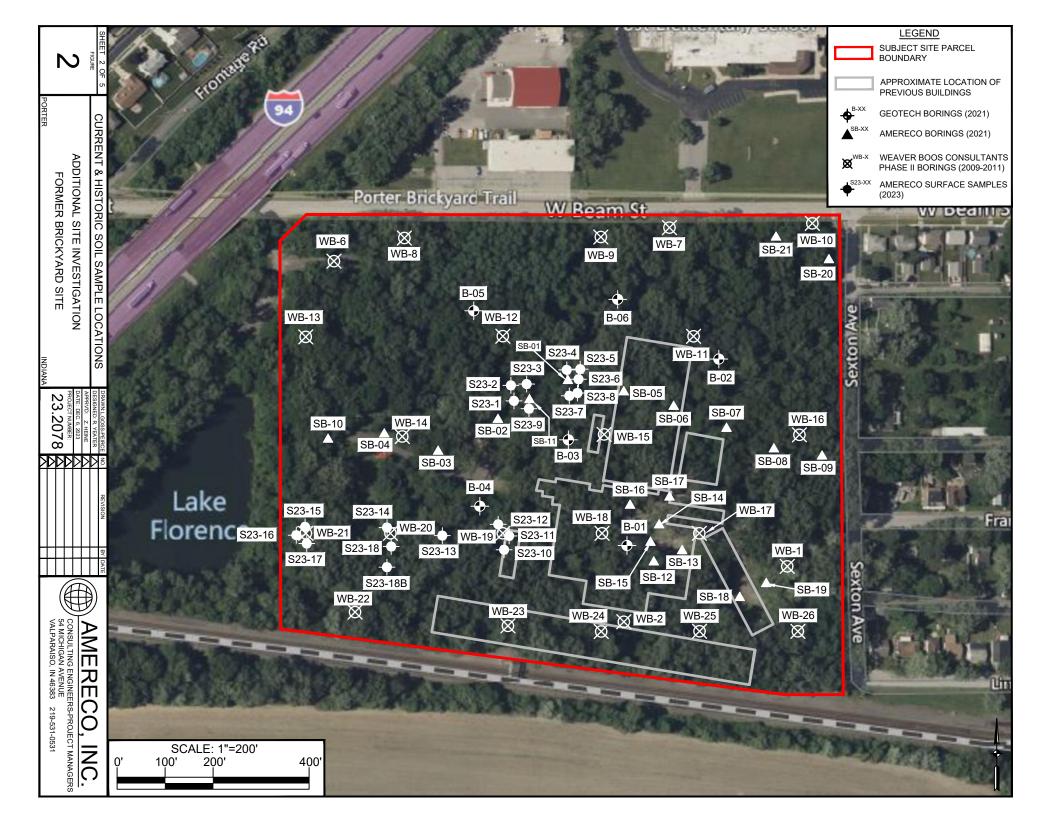
Indiana Department of Environmental Management (IDEM), Remediation Program Guide, July 9, 2012.

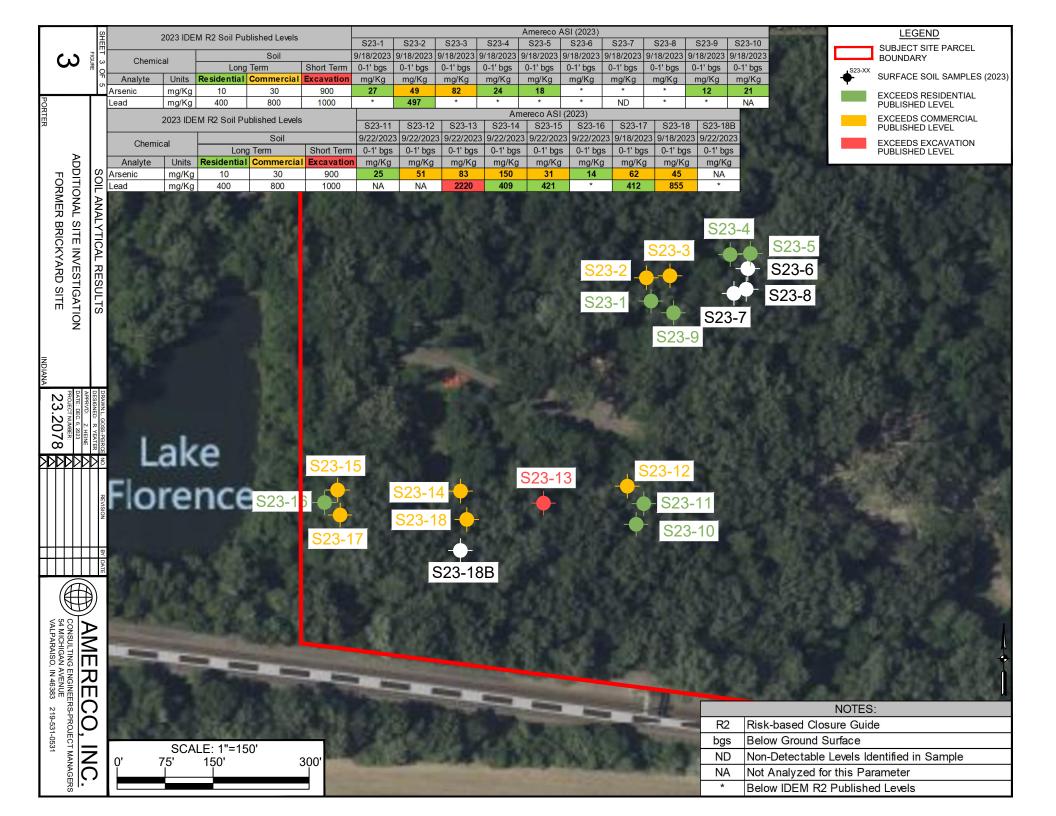
United States Geological Survey (USGS), Geochemical and Mineralogical Maps for Soils of the Conterminous U.S, USGS Open-File Report 2014-1082 and USGS Data Series 801, Updated May 16, 2014, https://mrdata.usgs.gov/soilgeochemistry/.

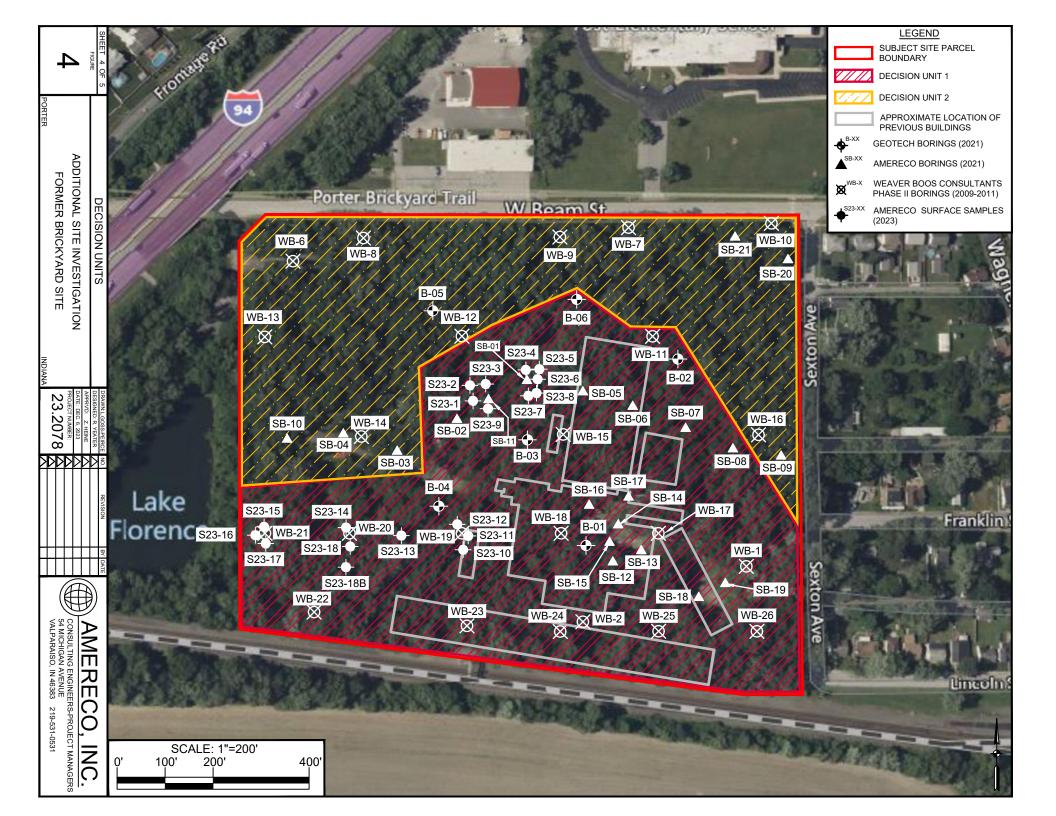
United States Geological Survey (USGS), *The National Geochemical Survey*, U.S. Geological Survey Open-File Report 2004-1001, Version 5.0, Updated September 30, 2008, https://mrdata.usgs.gov/geochem/ doc/home.htm.

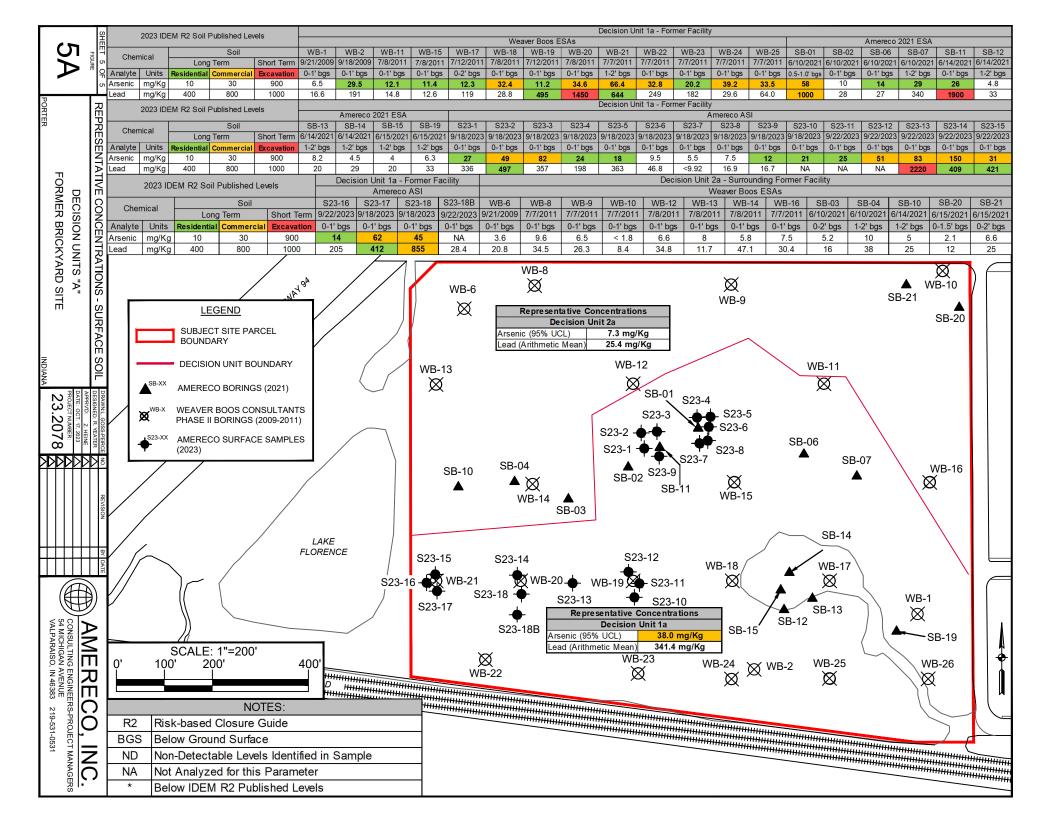
United States Environmental Protection Agency (US EPA), ProUCL: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, Version 5.2.00, 2022, https://www.epa.gov/land-research/proucl-software.

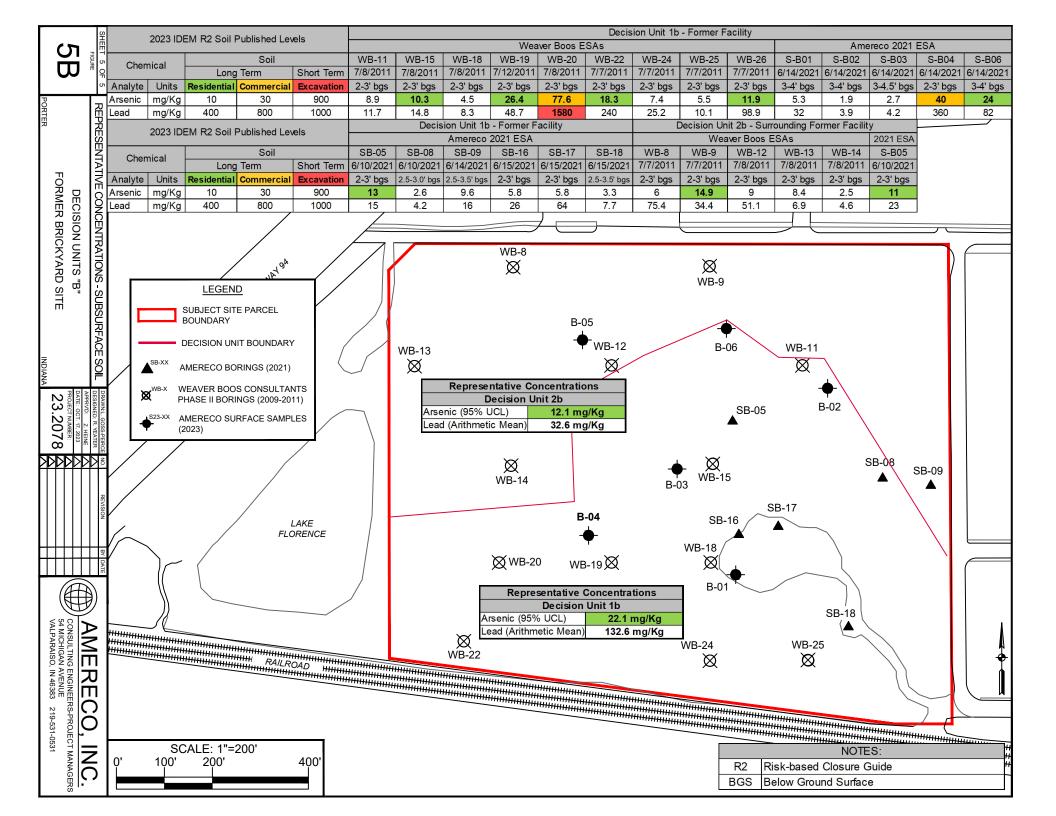

Weaver Boos Consultants, LLC, *Phase I Environmental Site Assessment* – 32-Acre Parcel, Southwest Corner of Beam Street and Sexton Avenue, Porter, IN 46304, Project No. 1991-351-02, July 5, 2006.


Weaver Boos Consultants, LLC, *Preliminary Phase II Environmental Site Assessment* – 32-Acre Property, Sexton Avenue & Lincoln Street, Porter, IN 46304, Project No. 2695351-03, October 7, 2009.


Weaver Boos Consultants, LLC, *Phase II Environmental Site Assessment* – Former Brickyard Property, Sexton Avenue & Lincoln Street, Porter, IN 46304, Project No. 2379351-03, September 12, 2011.


Appendix A


Figures



Appendix B

Tabulated Sample Results

Representative Concentration Summaries

Comprehensive Sample Summaries

ProUCL Output Datasheets

GPS Location Coordinate Data

Surface Soil Analytical Results (ASI) Arsenic and Lead

				Chemical	Arsenic	Lead
Sample ID:	Date	Sample Depth	Primary	CASRN /	7440-38-2	7439-92-1
,	Collected:	(ft bgs.):	Lithology:	Unit		
S23-1	9/18/2023	0-1'	Clay	mg/Kg	27	336
S23-2	9/18/2023	0-1'	Sand	mg/Kg	49	497
S23-3	9/18/2023	0-1'	Sand	mg/Kg	82	357
S23-4	9/18/2023	0-1'	Fill	mg/Kg	24	198
S23-5	9/18/2023	0-1'	Fill	mg/Kg	18	363
S23-6	9/18/2023	0-1'	Clay	mg/Kg	9.5	46.8
S23-7	9/18/2023	0-1'	Sand	mg/Kg	5.5	<9.92
S23-8	9/18/2023	0-1'	Sand	mg/Kg	7.5	16.9
S23-9	9/18/2023	0-1'	Clay	mg/Kg	12	16.7
S23-10	9/18/2023	0-1'	Fill	mg/Kg	21	NA
S23-11	9/22/2023	0-1'	Fill	mg/Kg	25	NA
S23-12	9/22/2023	0-1'	Fill	mg/Kg	51	NA
S23-13	9/22/2023	0-1'	Fill	mg/Kg	83	2220
S23-14	9/22/2023	0-1'	Fill	mg/Kg	150	409
S23-15	9/22/2023	0-1'	Fill	mg/Kg	31	421
S23-16	9/22/2023	0-1'	Sand	mg/Kg	14	205
S23-17	9/18/2023	0-1'	Fill	mg/Kg	62	412
S23-18	9/18/2023	0-1'	Fill	mg/Kg	45	855
(S23)S3-18B	9/22/2023	0-1'	Sand	mg/Kg	NA	28.4
	IDEM R2 2023 PLs - Long Term Residential					400
	IDEM R2 2023 PLs - Long Term Commercial					800
	IDEM R2 2023 PLs - Short Term Excavation					1000

IDEM = Indiana Department of Environmental Management

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), July 8, 2022

Screening Levels (SLs) are per Table A-6 of IDEM's Remediation Closure Guide (RCG)

All analytical and IDEM PLs are reported in milligrams per kilogram (mg/Kg) unless otherwise stated.

Bolded/Shaded values have detected results exceeding IDEM 2023 PLs

NA = Not Analyzed

bgs = below ground surface

Representative Concentrations Decision Units 1a and 2a

Decision Unit 1a						
Date	Sample ID	Depth Below Grade (ft.)	Arsenic (mg/Kg)	Lead (mg/Kg)		
9/21/2009	WB-1	0-1'	6.5	16.6		
9/18/2009	WB-2	0-1'	29.5	191		
7/8/2011	WB-11	0-1'	12.1	14.8		
7/8/2011	WB-15	0-1'	11.4	12.6		
7/12/2011	WB-17	0-2'	12.3	119		
7/8/2011	WB-18	0-1'	32.4	28.8		
7/12/2011	WB-19	0-1'	11.2	495		
7/8/2011	WB-20	0-1'	34.6	1450		
7/7/2011	WB-21	1-2'	66.4	644		
7/7/2011	WB-22	0-1'	32.8	249		
7/7/2011	WB-23	0-1'	20.2	182		
7/7/2011	WB-24	0-1'	39.2	29.6		
7/7/2011	WB-25	0-1'	33.5	64.0		
6/10/2021	SB-01	0.5-1.0'	58	1000		
6/10/2021	SB-02	0-1'	10	28		
6/10/2021	SB-06	0-1'	14	27		
6/10/2021	SB-07	1-2'	29	340		
6/14/2021	SB-11	0-1'	26	1900		
6/14/2021	SB-12	1-2'	4.8	33		
6/14/2021	SB-13	1-2'	8.2	20		
6/14/2021	SB-14	1-2'	4.5	29		
6/15/2021	SB-15	1-2'	4	20		
6/15/2021	SB-19	1-2'	6.3	33		
9/18/2023	S23-1	0-1'	27	336		
9/18/2023	S23-2	0-1'	49	497		
9/18/2023	S23-3	0-1'	82	357		
9/18/2023	S23-4	0-1'	24	198		
9/18/2023	S23-5	0-1'	18	363		
9/18/2023	S23-6	0-1'	9.5	46.8		
9/18/2023	S23-7	0-1'	5.5	4.96		
9/18/2023	S23-8	0-1'	7.5	16.9		
9/18/2023	S23-9	0-1'	12	16.7		
9/18/2023	S23-10	0-1'	21	NA		
9/22/2023	S23-11	0-1'	25	NA		
9/22/2023	S23-12	0-1'	51	NA		
9/22/2023	S23-13	0-1'	83	2220		
9/22/2023	S23-14	0-1'	150	409		
9/22/2023	S23-15	0-1'	31	421		
9/22/2023	S23-16	0-1'	14	205		
9/18/2023	S23-17	0-1'	62	412		
9/18/2023	S23-18	0-1'	45	855		
9/22/2023	S23-18B	0-1'	NA	28.4		
F	Representative	Concentrations	38.0	341.4		
	-	Residential PL	10	400		
		Commercial PL	30	800		
	(PLs) are per Table	900	1000			

Decision Unit 2a							
Date	Sample ID	Depth Below Grade (ft.)	Arsenic (mg/Kg)	Lead (mg/Kg)			
9/21/2009	WB-6	0-1'	3.6	20.8			
7/7/2011	WB-8	0-1'	9.6	34.5			
7/7/2011	WB-9	0-1'	6.5	26.3			
7/7/2011	WB-10	1-2'	0.9	8.4			
7/8/2011	WB-12	0-1'	6.6	34.8			
7/8/2011	WB-13	0-1'	8	11.7			
7/8/2011	WB-14	0-1'	5.8	47.1			
7/7/2011	WB-16	0-1'	7.5	30.4			
6/10/2021	SB-03	0-2'	5.2	16			
6/10/2021	SB-04	1-2'	10	38			
6/14/2021	SB-10	1-2'	5	25			
6/15/2021	SB-20	0-1.5'	2.1	12			
6/15/2021	SB-21	0-2'	6.6	25			
F	Representative	7.3	25.4				
IDEM R2 2	023 Long Term	10	400				
IDEM R2 20	23 Long Term	30	800				
IDEM R2 2	023 Short Term	Excavation PL	900	1000			

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), July 8, 2022.

All values are reported in milligrams per kilogram (mg/Kg) unless otherwise stated.

Bolded/Shaded values have detected results exceeding IDEM levels.

Italicized values were entered as one-half the laboratory reporting limit (LRL)

NA = Not analyed for this parameter

Representative Concentrations Decision Units 1b and 2b

Decision Unit 1b						
Date	Sample ID	Depth Below Grade (ft.)	Arsenic (mg/Kg)	Lead (mg/Kg)		
7/8/2011	WB-11	2-3'	8.9	11.7		
7/8/2011	WB-15	2-3'	10.3	14.8		
7/8/2011	WB-18	2-3'	4.5	8.3		
7/12/2011	WB-19	2-3'	26.4	48.7		
7/8/2011	WB-20	2-3'	77.6	1580		
7/7/2011	WB-22	2-3'	18.3	240		
7/7/2011	WB-24	2-3'	7.4	25.2		
7/7/2011	WB-25	2-3'	5.5	10.1		
7/7/2011	WB-26	2-3'	11.9	98.9		
6/14/2021	S-B01	3-4'	5.3	32		
6/14/2021	S-B02	3-4'	1.9	3.9		
6/14/2021	S-B03	3-4.5'	2.7	4.2		
6/14/2021	S-B04	2-3'	40	360		
6/14/2021	S-B06	3-4'	24	82		
6/10/2021	SB-05	2-3'	13	15		
6/10/2021	SB-08	2.5-3.0'	2.6	4.2		
6/14/2021	SB-09	2.5-3.5'	9.6	16		
6/15/2021	SB-16	2-3'	5.8	26		
6/15/2021	SB-17	2-3'	5.8	64		
6/15/2021	SB-18	2.5-3.5'	3.3	7.7		
F	Representative	22.1	132.6			
IDEM R2 2	023 Long Term	10	400			
IDEM R2 20	23 Long Term	30	800			
IDEM R2 2	023 Short Term	900	1000			

Decision Unit 2b						
Date	Sample ID	Depth Below Grade (ft.)	Arsenic (mg/Kg)	Lead (mg/Kg)		
7/7/2011	WB-8	2-3'	6	75.4		
7/7/2011	WB-9	2-3'	14.9	34.4		
7/8/2011	WB-12	2-3'	9	51.1		
7/8/2011	WB-13	2-3'	8.4	6.9		
7/8/2011	WB-14	2-3'	2.5	4.6		
6/10/2021	S-B05	2-3'	11	23		
F	Representative	Concentrations	12.1	32.6		
IDEM R2 2	10	400				
IDEM R2 20	23 Long Term	30	800			
IDEM R2 2	023 Short Term	Excavation PL	900	1000		

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), July 8, 2022. All values are reported in milligrams per kilogram (mg/Kg) unless otherwise stated. Bolded/Shaded values have detected results exceeding IDEM levels.

Soil Analytical Summary - Surface Select Contaminants of Concern

							ЭС			
					Φ		cel			
					en	40	ıra			
					'ac	ene	nt			
					ıthı) Sre	ћ)а	aue		
				ä	Benz(a)anthracene	Benzo(a)pyrene	Dibenz(a,h)anthracene	Naphthalene		
				Chemical	z(a)oz	nzı	뒫	Arsenic	~
				heı	enz	en:	ipe	apl	rse	Lead
					Ā	Ä	О	Z	Ā	Ľ
	Date	Sample Depth	Primary	CASRN /						
Sample ID :	Collected:	(ft.):	Lithology:	Unit	56-55-3	50-32-8	53-70-3	91-20-3	7440-38-2	
WB-1	9/21/2009	0-1'	Sand	mg/Kg	< 28.7	< 28.7	< 28.7	0.0567	6.5	16.6
WB-2	9/18/2009	0-1'	Sand	mg/Kg	4.15	3.34	1.02	1.7	29.5	191
WB-6	9/21/2009	0-1'	Sand	mg/Kg	< 26.9	< 26.9	< 26.9	< 26.9	3.6	20.8
WB-8	7/7/2011	0-1'	Clay	mg/Kg	0.0664	0.0652	< 0.0360	< 0.0360	9.6	34.5
WB-9	7/7/2011	0-1'	Clay	mg/Kg	0.0524	0.0647	< 0.0305	< 0.0305	6.5	26.3
WB-10	7/7/2011	0-1'	Sand	mg/Kg	0.217	0.178	0.0531	< 0.0258	< 1.8	8.4
WB-11	7/8/2011	0-1'	Clay	mg/Kg	< 0.0295	< 0.0295	< 0.0295	< 0.0295	12.1	14.8
WB-12	7/8/2011	0-1'	Clay	mg/Kg	0.0349	0.0365	< 0.0311	< 0.0311	6.6	34.8
WB-13	7/8/2011	0-1'	Clay	mg/Kg	< 0.0306	< 0.0306	< 0.0306	< 0.0306	8	11.7
WB-14	7/8/2011	0-1'	Clay	mg/Kg	0.312	0.322	0.0938	0.0401	5.8	47.1
WB-15	7/8/2011	0-1'	Clay	mg/Kg	< 0.0305	< 0.0305	< 0.0305	< 0.0305	11.4	12.6
WB-16	7/7/2011	0-1'	Clay	mg/Kg	0.0372	0.0441	< 0.0299	0.0732	7.5	30.4
WB-17	7/12/2011	0-2'	Clay	mg/Kg	0.98	1.07	0.338	0.273	12.3	119
WB-18	7/8/2011	0-1'	Fill	mg/Kg	< 0.0321	< 0.0321	< 0.0321	< 0.0321	32.4	28.8
WB-19	7/12/2011	0-1'	Fill	mg/Kg	0.37	0.442	0.142	0.352	11.2	495
WB-20	7/8/2011	0-1'	Fill	mg/Kg	0.984	0.939	0.28	0.452	34.6	1450
WB-21	7/7/2011	1-2'	Fill	mg/Kg	0.81	0.708	0.237	0.73	66.4	644
WB-22	7/7/2011	0-1'	Fill	mg/Kg	0.936	0.75	0.238	1.03	32.8	249
WB-23	7/7/2011	0-1'	Fill	mg/Kg	0.674	0.618	0.185	0.548	20.2	182
WB-24 WB-25	7/7/2011	0-1'	Fill	mg/Kg	0.15	0.142	0.0394	0.0526	39.2	29.6
S-01 (SB-01)	7/7/2011 6/10/2021	0-1' 0.5-1.0'	Clay Fill	mg/Kg	0.22 3.5	0.181 3.9	0.0554 1.3	0.438 0.19	33.5 58	64.0 1000
S-01 (SB-01)	6/10/2021	0.5-1.0	Clay	mg/Kg mg/Kg	< 0.038	< 0.038	< 0.038	< 0.038	10	28
S-02 (SB-02)	6/10/2021	0-1	Clay	mg/Kg	0.045	< 0.038	< 0.039	< 0.038	5.2	16
S-03 (SB-03)	6/10/2021	1-2'	Clay	mg/Kg	0.043	0.042	< 0.039	< 0.039	10	38
S-04 (SB-04)	6/10/2021	0-1'	Sand	mg/Kg	< 0.041	< 0.042	< 0.040	< 0.040	14	27
S-00 (SB-00)	6/10/2021	1-2'	Fill	mg/Kg	0.89	1.0	0.37	0.12	29	340
S-10 (SB-10)	6/14/2021	1-2'	Sand	mg/Kg	0.17	0.21	0.095	< 0.035	5.0	25
S-11 (SB-11)	6/14/2021	0-1'	Fill	mg/Kg	2.7	2.5	0.82	0.37	26	1900
S-12 (SB-12)	6/14/2021	1-2'	Clay	mg/Kg	0.33	0.39	0.19	< 0.036	4.8	33
S-13 (SB-13)	6/14/2021	1-2'	Clay	mg/Kg	0.29	0.30	0.13	< 0.038	8.2	20
S-14 (SB-14)	6/14/2021	1-2'	Sand	mg/Kg	0.44	0.50	0.21	< 0.037	4.5	29
S-15 (SB-15)	6/15/2021	1-2'	Clay	mg/Kg	0.52	0.60	0.23	< 0.038	4.0	20
S-19 (SB-19)	6/15/2021	1-2'	Clay	mg/Kg	0.070	0.10	0.065	< 0.037	6.3	33
S-20 (SB-20)	6/15/2021	0-1.5'	Sand	mg/Kg	0.045	0.059	< 0.034	< 0.034	2.1	12
S-21 (SB-21)	6/15/2021	0-2'	Sand	mg/Kg	0.21	0.20	0.083	< 0.038	6.6	25
S23-1	9/18/2023	0-1'	Clay	mg/Kg	NA	NA	NA	NA	27	336
S23-2	9/18/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	49	497
S23-3	9/18/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	82	357
S23-4	9/18/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	24	198
S23-5	9/18/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	18	363
S23-6	9/18/2023	0-1'	Clay	mg/Kg	NA	NA	NA	NA	9.5	46.8
S23-7	9/18/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	5.5	<9.92
S23-8	9/18/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	7.5	16.9
IDEM		Ls - Soil Migra			2.1	4.7	19	0.079	5.9	270
		2 2023 PLs - Lo			20	2	2	30	10	400
		2023 PLs - Lon			200	20	20	90	30	800
	IDEM R	2 2023 PLs - Sh	ort Term E	xcavation	10000	500	1000	3000	900	1000

Soil Analytical Summary - Surface Select Contaminants of Concern

				Chemical	Benz(a)anthracene	Benzo(a)pyrene	Dibenz(a,h)anthracene	Naphthalene	Arsenic	Lead
	Date	Sample Depth	Primary	CASRN /						
Sample ID :	Collected:	(ft.):	Lithology:	Unit	56-55-3	50-32-8	53-70-3	91-20-3	7440-38-2	7439-92-1
S23-9	9/18/2023	0-1'	Clay	mg/Kg	NA	NA	NA	NA	12	16.7
S23-10	9/18/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	21	NA
S23-11	9/22/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	25	NA
S23-12	9/22/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	51	NA
S23-13	9/22/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	83	2220
S23-14	9/22/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	150	409
S23-15	9/22/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	31	421
S23-16	9/22/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	14	205
S23-17	9/18/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	62	412
S23-18	9/18/2023	0-1'	Fill	mg/Kg	NA	NA	NA	NA	45	855
(S23)S3-18B	9/22/2023	0-1'	Sand	mg/Kg	NA	NA	NA	NA	NA	28.4
IDEM	RCG 2022 S	SLs - Soil Migra	tion to Gro	undwater	2.1	4.7	19	0.079	5.9	270
	IDEM R	2 2023 PLs - Lo	ng Term R	esidential	20	2	2	30	10	400
	IDEM R2	2023 PLs - Lon	g Term Co	mmercial	200	20	20	90	30	800
	IDEM R	2 2023 PLs - Sh	ort Term E	xcavation	10000	500	1000	3000	900	1000

IDEM = Indiana Department of Environmental Management

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), July 8, 2022

Screening Levels (SLs) are per Table A-6 of IDEM's Remediation Closure Guide (RCG)

All analytical and IDEM PLs are reported in milligrams per kilogram (mg/Kg) unless otherwise stated.

Bolded/Shaded values have detected results exceeding IDEM 2023 PLs

NA = Not Analyzed

Soil Analytical Summary - Subsurface Select Contaminants of Concern

				Chemical	Benz(a)anthracene	Benzo(a)pyrene	Dibenz(a,h)anthracene	Naphthalene	Arsenic	Lead
0 1 10	Date	Sample Depth	Primary	CASRN /		50.00.0	50 70 0	04.00.0	7440.00.0	7400 00 4
Sample ID :	Collected:	(ft.):	Lithology:	Unit	56-55-3	50-32-8	53-70-3	91-20-3	7440-38-2	
WB-8	7/7/2011	2-3'	Sand	mg/Kg	0.039	0.0406	< 0.0305	< 0.0305	6	75.4
WB-9	7/7/2011	2-3' 2-3'	Clay	mg/Kg	0.0608	0.0638	< 0.0308	< 0.0308	14.9	34.4
WB-11 WB-12	7/8/2011 7/8/2011	2-3'	Clay Clay	mg/Kg	< 0.0966 < 0.0298	< 0.0296 0.0424	< 0.0966 < 0.0298	< 0.0296 < 0.0298	8.9 9	11.7 51.1
WB-12 WB-13	7/8/2011	2-3 2-3'	Clay	mg/Kg mg/Kg	< 0.0298	< 0.0302	< 0.0298	< 0.0298	8.4	6.9
WB-13 WB-14	7/8/2011	2-3'	Sand	mg/Kg	< 0.0302	< 0.0302	< 0.0302	< 0.0302	2.5	4.6
WB-14 WB-15	7/8/2011	2-3'	Clay	mg/Kg	< 0.0204	< 0.0204	< 0.0204	< 0.0204	10.3	14.8
WB-13 WB-18	7/8/2011	2-3'	Clay	mg/Kg	< 0.0306	< 0.0306	< 0.0291	< 0.0291	4.5	8.3
WB-18	7/12/2011	2-3'	Clay	mg/Kg	0.0328	< 0.0323	< 0.0323	0.0398	26.4	48.7
WB-19 WB-20	7/8/2011	2-3'	Fill	mg/Kg	0.189	0.175	0.0498	0.0897	77.6	1580
WB-20	7/7/2011	2-3'	Clay	mg/Kg	2.42	1.92	0.53	0.736	18.3	240
WB-24	7/7/2011	2-3'	Sand	mg/Kg	0.0978	0.0881	< 0.0318	0.198	7.4	25.2
WB-25	7/7/2011	2-3'	Sand	mg/Kg	0.0415	0.0495	0.0519	< 0.0301	5.5	10.1
WB-26	7/7/2011	2-3'	Sand	mg/Kg	0.235	0.242	0.071	0.12	11.9	98.9
S-B05	6/10/2021	2-3'	Clay	mg/Kg	< 0.041	< 0.041	< 0.041	< 0.041	11	23
S-B01	6/14/2021	3-4'	Sand	mg/Kg	2.3	2.3	0.83	< 0.35	5.3	32
S-B02	6/14/2021	3-4'	Sand	mg/Kg	< 0.034	< 0.034	< 0.034	< 0.034	1.9	3.9
S-B04	6/14/2021	2-3'	Fill	mg/Kg	1.2	1.4	0.45	0.18	40	360
S-B03	6/14/2021	3-4.5'	Sand	mg/Kg	< 0.037	< 0.037	< 0.037	< 0.037	2.7	4.2
S-B06	6/14/2021	3-4'	Fill	mg/Kg	0.32	0.36	0.11	0.10	24	82
S-05 (SB-05)	6/10/2021	2-3'	Sand	mg/Kg	< 0.041	< 0.041	< 0.041	< 0.041	13	15
S-08 (SB-08)	6/10/2021	2.5-3.0'	Sand	mg/Kg	< 0.035	< 0.035	< 0.035	< 0.035	2.6	4.2
S-09 (SB-09)	6/14/2021	2.5-3.5'	Sand	mg/Kg	< 0.046	< 0.046	< 0.046	< 0.046	9.6	16
S-16 (SB-16)	6/15/2021	2-3'	Sand	mg/Kg	0.28	0.31	0.13	0.057	5.8	26
S-17 (SB-17)	6/15/2021	2-3'	Fill	mg/Kg	3.4	5.5	2.1	0.26	5.8	64
S-18 (SB-18)	6/15/2021	2.5-3.5'	Sand	mg/Kg	0.046	0.051	< 0.038	< 0.038	3.3	7.7
S-22		Ouplicate of S-18		mg/Kg	< 0.038	< 0.038	< 0.038	< 0.038	3.9	7.7
IDEN		SLs - Soil Migrat			2.1	4.7	19	0.079	5.9	270
		2 2023 PLs - Lo			20	2	2	30	10	400
		2 2023 PLs - Lon	<u> </u>		200	20	20	90	30	800
IDEM I II D		2 2023 PLs - She		xcavation	10000	500	1000	3000	900	1000

IDEM = Indiana Department of Environmental Management

Published Levels (PLs) are per Table 1 of IDEM's Risk-based Closure Guide (R2), July 8, 2022

Screening Levels (SLs) are per Table A-6 of IDEM's Remediation Closure Guide (RCG)

All analytical and IDEM PLs are reported in milligrams per kilogram (mg/Kg) unless otherwise stated.

Bolded/Shaded values have detected results exceeding IDEM 2023 PLs

	UCL Statis	tics for Unc	ensored Full Data Sets	
User Selected Options	3			
Date/Time of Computation	ProUCL 5.2 12/8/2023 8:	04:34 AM		
From File	UCL Data Sets - Arsenic.	xls		
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Arsenic - Decision Unit 1a				
		General	Statistics	
Total	Number of Observations	41	Number of Distinct Observations	40
			Number of Missing Observations	0
	Minimum	4	Mean	29.84
	Maximum	150	Median	24
	SD	28.4	Std. Error of Mean	4.435
	Coefficient of Variation	0.952	Skewness	2.278
			GOF Test	
	Shapiro Wilk Test Statistic	0.785	Shapiro Wilk GOF Test	
1% S	hapiro Wilk Critical Value	0.92	Data Not Normal at 1% Significance Level	
	Lilliefors Test Statistic	0.19	Lilliefors GOF Test	
1	% Lilliefors Critical Value	0.16	Data Not Normal at 1% Significance Level	
	Data Not	Normal at 1	% Significance Level	
	Ass	sumina Nori	mal Distribution	
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	37.31	95% Adjusted-CLT UCL (Chen-1995)	38.82
			95% Modified-t UCL (Johnson-1978)	37.57
			<u> </u>	
		Gamma	GOF Test	
	A-D Test Statistic	0.408	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.767	Detected data appear Gamma Distributed at 5% Significance	e Level
	K-S Test Statistic	0.115	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.141	Detected data appear Gamma Distributed at 5% Significance	e Level
	Detected data appear	Gamma Di	stributed at 5% Significance Level	
			Statistics	
	k hat (MLE)	1.472	k star (bias corrected MLE)	1.38
	Theta hat (MLE)	20.27	Theta star (bias corrected MLE)	21.62
	nu hat (MLE)	120.7	nu star (bias corrected)	113.2
М	LE Mean (bias corrected)	29.84	MLE Sd (bias corrected)	25.4
			Approximate Chi Square Value (0.05)	89.63
Adjus	sted Level of Significance	0.0441	Adjusted Chi Square Value	88.86
		umis = 0 =	nuo Diatribution	
050/ 4			nma Distribution	20.04
95% A	pproximate Gamma UCL	37.68	95% Adjusted Gamma UCL	38.01

	Lognormal GO	F Test	
Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.95	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.0827	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.126	Data appear Lognormal at 10% Significance Level	
Data appear I	ognormal at 10	% Significance Level	
	Lognormal Sta		
Minimum of Logged Data	1.386	Mean of logged Data	3.01
Maximum of Logged Data	5.011	SD of logged Data	0.89
	ming Lognormal		
95% H-UCL	41.96	90% Chebyshev (MVUE) UCL	44.5
95% Chebyshev (MVUE) UCL	51.07	97.5% Chebyshev (MVUE) UCL	60.1
99% Chebyshev (MVUE) UCL	77.91		
Nonnarame	tric Distribution I	Free LICL Statistics	
•		Free UCL Statistics	
•		Free UCL Statistics ernible Distribution	
Data appear		ernible Distribution	
Data appear	r to follow a Disc	ernible Distribution	38.5
Data appear	r to follow a Disc	ernible Distribution	
Nonpara 95% CLT UCL	ametric Distribut	cion Free UCLs 95% BCA Bootstrap UCL	40.4
Nonpara 95% CLT UCL 95% Standard Bootstrap UCL	ametric Distribut	cion Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL	40.4 37.7
Nonpara 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	ametric Distribut 37.13 37.15 42.64	cion Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	38.5 40.4 37.7 49.1 73.9
Nonpara 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	ametric Distribut 37.13 37.15 42.64 43.14 57.54	95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	40.4 37.7 49.1
Data appear Nonpare 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	ametric Distribut 37.13 37.15 42.64 43.14 57.54 Suggested UCL	95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	40.4 37.7 49.1
Nonpara 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	ametric Distribut 37.13 37.15 42.64 43.14 57.54	95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	40.4 37.7 49.1
Nonpara 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	ametric Distribut 37.13 37.15 42.64 43.14 57.54 Suggested UCL 38.01	95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	40.4 37.7 49.1

	UCL Statist	tics for Unc	ensored Full Data Sets	
User Selected Options				
Date/Time of Computation	ProUCL 5.2 12/8/2023 8:0	05:02 AM		
From File	UCL Data Sets - Arsenic.:			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Number of Bootstrap Operations	2000			
Arsenic - Decision Unit 2a				
7 TOOTHO DOGIOIOTI OTHE 20				
		General	Statistics	
Total	Number of Observations	13	Number of Distinct Observations	12
			Number of Missing Observations	0
	Minimum	0.9	Mean	5.954
	Maximum	10	Median	6.5
	SD	2.659	Std. Error of Mean	0.737
	Coefficient of Variation	0.447	Skewness	-0.383
	Commission variation	0.117	ckemico	0.000
		Normal C	GOF Test	
S	Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test	
	hapiro Wilk Critical Value	0.814	Data appear Normal at 1% Significance Level	
	Lilliefors Test Statistic	0.129	Lilliefors GOF Test	
1	% Lilliefors Critical Value	0.271	Data appear Normal at 1% Significance Level	
	Data appea	r Normal at	: 1% Significance Level	
	Ass	uming Norr	mal Distribution	
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	7.268	95% Adjusted-CLT UCL (Chen-1995)	7.083
			95% Modified-t UCL (Johnson-1978)	7.255
		Gamma (GOF Test	
	A-D Test Statistic	0.619	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance	ce Level
	K-S Test Statistic	0.216	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.238	Detected data appear Gamma Distributed at 5% Significance	ce Level
	Detected data appear	Gamma Dis	stributed at 5% Significance Level	
		Gamma	Statistics	
	k hat (MLE)	3.484	k star (bias corrected MLE)	2.731
	Theta hat (MLE)	1.709	Theta star (bias corrected MLE)	2.18
	nu hat (MLE)	90.58	nu star (bias corrected)	71.01
М	LE Mean (bias corrected)	5.954	MLE Sd (bias corrected)	3.603
	I		Approximate Chi Square Value (0.05)	52.61
Adjus	sted Level of Significance	0.0301	Adjusted Chi Square Value	50.36
	Ass	uming Gam	ma Distribution	
95% A	pproximate Gamma UCL	8.036	95% Adjusted Gamma UCL	8.396

	Lognormal GOF	Test	
Shapiro Wilk Test Statistic	0.82	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.889	Data Not Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.255	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.215	Data Not Lognormal at 10% Significance Level	
Data Not Lo	gnormal at 10% s	Significance Level	
	Lognormal Stati	stics	
Minimum of Logged Data	-0.105	Mean of logged Data	1.63
Maximum of Logged Data	2.303	SD of logged Data	0.66
	ming Lognormal I		
95% H-UCL	10	90% Chebyshev (MVUE) UCL	9.89
95% Chebyshev (MVUE) UCL	11.54	97.5% Chebyshev (MVUE) UCL	13.8
99% Chebyshev (MVUE) UCL	18.3		
Nonparame	tric Distribution F	ree UCL Statistics	
Data appear	to follow a Disce	rnible Distribution	
Nonpar	ametric Distribution	on Free UCLs	
95% CLT UCL	7.167	95% BCA Bootstrap UCL	7.08
95% Standard Bootstrap UCL	7.114	95% Bootstrap-t UCL	7.17
95% Hall's Bootstrap UCL	7.134	95% Percentile Bootstrap UCL	7.14
	8.166	95% Chebyshev(Mean, Sd) UCL	9.16
90% Chebyshev(Mean, Sd) UCL	10.56	99% Chebyshev(Mean, Sd) UCL	13.2
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	10.56		
97.5% Chebyshev(Mean, Sd) UCL		o Use	
97.5% Chebyshev(Mean, Sd) UCL	Suggested UCL t	o Use	
97.5% Chebyshev(Mean, Sd) UCL		o Use	
97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL	Suggested UCL t	o Use I to help the user to select the most appropriate 95% UCL.	
97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a 95%	Suggested UCL t 7.268 UCL are provided		

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

	UCL Statist	tics for Unc	ensored Full Data Sets	
Lloor Coloated Ontions				
User Selected Options Date/Time of Computation	ProUCL 5.2 12/8/2023 8:0	10.07 ΔΜ		
From File	UCL Data Sets - Arsenic.:			
Full Precision	OFF	AIS .		
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Number of bootstrap Operations	2000			
Arsenic - Decision Unit 1b				
7.11001110 200101011 01111 12				
		General	Statistics	
Tota	I Number of Observations	20	Number of Distinct Observations	19
			Number of Missing Observations	0
	Minimum	1.9	Mean	14.24
	Maximum	77.6	Median	8.15
	SD	17.76	Std. Error of Mean	3.971
	Coefficient of Variation	1.247	Skewness	2.755
		Normal (GOF Test	
	Shapiro Wilk Test Statistic	0.657	Shapiro Wilk GOF Test	
	Shapiro Wilk Critical Value	0.868	Data Not Normal at 1% Significance Level	
	Lilliefors Test Statistic	0.278	Lilliefors GOF Test	
1	1% Lilliefors Critical Value	0.223	Data Not Normal at 1% Significance Level	
	Data Not	Normal at 1	% Significance Level	
	Ass	uming Nori	mal Distribution	
95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	21.11	95% Adjusted-CLT UCL (Chen-1995)	23.38
			95% Modified-t UCL (Johnson-1978)	21.51
		Gamma	GOF Test	
	A-D Test Statistic	0.691	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.765	Detected data appear Gamma Distributed at 5% Significanc	e Level
	K-S Test Statistic	0.164	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.199	Detected data appear Gamma Distributed at 5% Significanc	e Level
	Detected data appear	Gamma Di	stributed at 5% Significance Level	
		Gamma	Statistics	
	k hat (MLE)	1.167	k star (bias corrected MLE)	1.025
	Theta hat (MLE)	12.2	Theta star (bias corrected MLE)	13.89
	nu hat (MLE)	46.68	nu star (bias corrected)	41.01
M	LE Mean (bias corrected)	14.24	MLE Sd (bias corrected)	14.06
	I		Approximate Chi Square Value (0.05)	27.33
Adju	sted Level of Significance	0.038	Adjusted Chi Square Value	26.45
	Ass	uming Gam	ma Distribution	
95% A	Approximate Gamma UCL	21.36	95% Adjusted Gamma UCL	22.08

	Lognormal GOF	Test	
Shapiro Wilk Test Statistic	0.972	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.116	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.176	Data appear Lognormal at 10% Significance Level	
Data appear l	ognormal at 109	% Significance Level	
	Lognormal Stat	istics	
Minimum of Logged Data	0.642	Mean of logged Data	2.1
Maximum of Logged Data	4.352	SD of logged Data	0.9
	ming Lognormal		
95% H-UCL	24.54	90% Chebyshev (MVUE) UCL	23.1
95% Chebyshev (MVUE) UCL	27.49	97.5% Chebyshev (MVUE) UCL	33.5
99% Chebyshev (MVUE) UCL	45.49		
Nonparamet	tric Distribution F	ree UCL Statistics	
Data appear	to follow a Disc	ernible Distribution	
Nonpara	ametric Distribut	ion Free UCLs	
95% CLT UCL	20.77	95% BCA Bootstrap UCL	23.4
95% Standard Bootstrap UCL	20.69	95% Bootstrap-t UCL	28.1
95% Hall's Bootstrap UCL	47.88	95% Percentile Bootstrap UCL	21.5
90% Chebyshev(Mean, Sd) UCL	26.15	95% Chebyshev(Mean, Sd) UCL	31.5
	39.04	99% Chebyshev(Mean, Sd) UCL	53.7
97.5% Chebyshev(Mean, Sd) UCL			
, , , ,	Suggested LICI	to lise	
, , , ,	Suggested UCL 22.08	to Use	
, , , , , <u>, , , , , , , , , , , , , , </u>		to Use	
95% Adjusted Gamma UCL The calculated UCLs are based on assumption	22.08 ons that the data	were collected in a random and unbiased manner.	
95% Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the december 1.00 per page 1.00	22.08 ons that the data ata were collected	were collected in a random and unbiased manner.	
95% Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data were collected	22.08 ons that the data ata were collecte using judgmenta	were collected in a random and unbiased manner. ad from random locations. all or other non-random methods,	
95% Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data were collected	22.08 ons that the data ata were collecte using judgmenta	were collected in a random and unbiased manner.	
95% Adjusted Gamma UCL The calculated UCLs are based on assumption Please verify the data were collected then contact a second contact a sec	ons that the data ata were collecte using judgmenta statistician to cor	were collected in a random and unbiased manner. ad from random locations. all or other non-random methods,	

	UCL Statis	tics for Unc	ensored Full Data Sets	
User Selected Options				
Date/Time of Computation P	ProUCL 5.2 12/7/2023 1:	30:56 PM		
From File U	JCL Data Sets - Arsenic.	xls		
Full Precision C)FF			
Confidence Coefficient 9	95%			
Number of Bootstrap Operations 2	2000			
rsenic - Decision Unit 2b				
		General	Statistics	
Total N	lumber of Observations	6	Number of Distinct Observations	6
			Number of Missing Observations	0
	Minimum	2.5	Mean	8.633
	Maximum	14.9	Median	8.7
	SD	4.234	Std. Error of Mean	1.728
	Coefficient of Variation	0.49	Skewness	0.0412
			he Chebyshev UCL for small sample sizes (n < 7).	
Refer	r to the ProUCL 5.2 Tec	Normal 0	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test	
Refer	r to the ProUCL 5.2 Tec	Normal C 0.992 0.713	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test	
Refer Sha 1% Sha	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value	Normal C 0.992 0.713 0.145 0.373	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	
Refer Sha 1% Sha	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea	Normal C 0.992 0.713 0.145 0.373 ar Normal at	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level eliable for small sample sizes	
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea	Normal C 0.992 0.713 0.145 0.373 ar Normal at	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level e 1% Significance Level eliable for small sample sizes mal Distribution	
Refer Sha 1% Sha	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unre	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level et 1% Significance Level et 1% Significance Level et appear Normal at 1% Significance Level	
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea	Normal C 0.992 0.713 0.145 0.373 ar Normal at	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level eliable for small sample sizes mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	11.51
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unre	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level et al. Significance Level	11.51
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal 12.12	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level eliable for small sample sizes mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal 12.12	In gross overestimates of the mean. In gross overestimates over the control of the mean. In gross overestimates of the chest, and the significance Level In gross overestimates over the chest, and the significance Level In gross overestimates over the chest, and the significance Level In gross overestimates over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the chest, and the significance Level In gross over the ches	
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I Ass mal UCL 95% Student's-t UCL	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unres	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level sliable for small sample sizes mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	12.12
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests Ass mal UCL 95% Student's-t UCL	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal 12.12	In gross overestimates of the mean. In gross overestimates over the control of the c	12.12
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests Ass mal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal 12.12 Gamma C 0.257 0.7	In gross overestimates of the mean. For a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level Significance Level Significance Level Pliable for small sample sizes Mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	12.12 e Level
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Data appea Note GOF tests I Ass mal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Normal (0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal at 0.257 0.7 0.213 0.334	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level S	12.12 e Level
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Data appear Note GOF tests I Assemal UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unrecessuming Normal C 0.257 0.7 0.213 0.334 Gamma Disconnections	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level e 1% Significance Level eliable for small sample sizes mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	12.12 e Level
Sha 1% Sha 1%	apiro Wilk Test Statistic apiro Wilk Critical Value Lilliefors Test Statistic Data appear Note GOF tests I Assemal UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	Normal C 0.992 0.713 0.145 0.373 ar Normal at may be unressuming Normal C 12.12 Gamma C 0.257 0.7 0.213 0.334 Gamma Dismay be unressuming Normal C Company of the company	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL. GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level 1% Significance Level In appear Normal at 1% Significance Level Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Level	12.12 e Level

Theta hat (MLE)	2.211	Theta star (bias corrected MLE)	4.18
nu hat (MLE)	46.85	nu star (bias corrected)	24.70
MLE Mean (bias corrected)	8.633	MLE Sd (bias corrected)	6.01
		Approximate Chi Square Value (0.05)	14.4
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	11.6
Ass	uming Gam	nma Distribution	
95% Approximate Gamma UCL	14.82	95% Adjusted Gamma UCL	18.3
		I GOF Test	
Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.826	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.235	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.298	Data appear Lognormal at 10% Significance Level	
	_	at 10% Significance Level	
Note GOF tests r	may be unre	eliable for small sample sizes	
	Lognorma	al Statistics	
Minimum of Logged Data	0.916	Mean of logged Data	2.02
Maximum of Logged Data	2.701	SD of logged Data	0.62
		ormal Distribution	
95% H-UCL	20.71	90% Chebyshev (MVUE) UCL	15.5
95% Chebyshev (MVUE) UCL	18.55	97.5% Chebyshev (MVUE) UCL	22.7
99% Chebyshev (MVUE) UCL	31.01		
Nonparame	tric Distribu	ition Free UCL Statistics	
•		Discernible Distribution	
	5:		
		tribution Free UCLs	11.0
95% CLT UCL	11.48	95% BCA Bootstrap UCL	11.3
95% Standard Bootstrap UCL	11.27	95% Bootstrap-t UCL	12.0
95% Hall's Bootstrap UCL	12.32	95% Percentile Bootstrap UCL	11.3
90% Chebyshev(Mean, Sd) UCL	13.82	95% Chebyshev(Mean, Sd) UCL	16.1
	19.43	99% Chebyshev(Mean, Sd) UCL	25.8
97.5% Chebyshev(Mean, Sd) UCL			
		UCL to Use	
		UCL to Use	
95% Student's-t UCL	Suggested 12.12		
95% Student's-t UCL Note: Suggestions regarding the selection of a 95%	Suggested 12.12 UCL are pr	Ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	

ASI Sample Locations - State Plane Coordinates - September 2023 (Zone 1302)

Sample ID	Northing	Easting
S23-01	2319305.53	2953636.09
S23-02	2319337.80	2953629.65
S23-03	2319340.61	2953662.92
S23-04	2319370.07	2953746.11
S23-05	2319371.58	2953774.09
S23-06	2319350.56	2953770.53
S23-07	2319316.12	2953751.30
S23-08	2319321.87	2953768.31
S23-09	2319289.23	2953667.26
S23-10	2318986.68	2953610.47
S23-11	2318979.56	2953644.16
S23-12	2318955.25	2953619.72
S23-13	2318976.60	2953520.53
S23-14	2318963.93	2953383.53
S23-15	2318967.46	2953207.70
S23-16	2318988.86	2953186.81
S23-17	2319008.35	2953204.33
S23-18	2319002.18	2953380.25

Appendix C

Laboratory Reports

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

September 27, 2023

Amereco Inc. 54 Michigan Avenue Valparaiso, IN 46383 Telephone: (219) 531-0531

Fax: (219) 464-9166

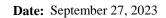
Analytical Report for Work Order: 23090607 Revision 0

RE: 23.2078, Brickyard Property, Porter, IN. 46304

Dear Amereco Inc.:

Sterling Labs received 18 samples for the referenced project on 9/20/2023 1:20:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with methods as referenced on the analytical report and were performed within established holding time criteria. All Quality Control criteria met TNI or laboratory specifications except when noted in the Case Narrative, Analytical Report or Sample Receipt Checklist. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.


Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. Sterling labs is not responsible for customer provided information found in the report that is used to calculate final results. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, Sterling Labs will be under no obligation to support, defend or discuss the analytical report.

Customer: Amereco Inc.

Project: 23.2078, Brickyard Property, Porter, IN. 46304 Work Order Sample Summary

Work Order: 23090607 Revision 0

Lab Sample ID	Customer Sample ID	Tag Number	Collection Date	Date Received
23090607-001A	S23-1		9/18/2023 10:16:00 AM	9/20/2023
23090607-002A	S23-2		9/18/2023 10:28:00 AM	9/20/2023
23090607-003A	S23-3		9/18/2023 10:34:00 AM	9/20/2023
23090607-004A	S23-4		9/18/2023 10:50:00 AM	9/20/2023
23090607-005A	S23-5		9/18/2023 10:57:00 AM	9/20/2023
23090607-006A	S23-6		9/18/2023 10:43:00 AM	9/20/2023
23090607-007A	S23-7		9/18/2023 11:02:00 AM	9/20/2023
23090607-008A	S23-8		9/18/2023 11:11:00 AM	9/20/2023
23090607-009A	S23-9		9/18/2023 11:25:00 AM	9/20/2023
23090607-010A	S23-10		9/18/2023 11:10:00 AM	9/20/2023
23090607-011A	S23-11		9/18/2023 11:15:00 AM	9/20/2023
23090607-012A	S23-12		9/18/2023 11:20:00 AM	9/20/2023
23090607-013A	S23-13		9/18/2023 11:01:00 AM	9/20/2023
23090607-014A	S23-14		9/18/2023 12:09:00 PM	9/20/2023
23090607-015A	S23-15		9/18/2023 12:34:00 PM	9/20/2023
23090607-016A	S23-16		9/18/2023 12:48:00 PM	9/20/2023
23090607-017A	S23-17		9/18/2023 12:41:00 PM	9/20/2023
23090607-018A	S23-18		9/18/2023 12:23:00 PM	9/20/2023

Date Printed:

 $2242\ West\ Harrison\ St., Suite\ 200,\ Chicago,\ IL\ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: September 27, 2023

September 27, 2023

Customer: Amereco Inc.

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Work Order:** 23090607 Revision 0

Lab ID: 23090607-001 **Collection Date:** 9/18/2023 10:16:00 AM

Customer Sample ID: S23-1 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 27 mg/Kg-dry 9/26/2023 1.1 10 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD 9/26/2023 Percent Moisture 18.2 0.2 wt%

Lab ID: 23090607-002 **Collection Date:** 9/18/2023 10:28:00 AM

Customer Sample ID: S23-2 Matrix: Soil

Result RL Qualifier Units **Analyses** DF **Date Analyzed** SW6020A (SW3050B) Prep Date: 9/26/2023 Metals by ICP/MS Analyst: MDS IEPA ELAP 100445 Arsenic 49 1.2 mg/Kg-dry 10 9/26/2023 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD Percent Moisture 15.2 0.2 wt% 9/26/2023

Lab ID: 23090607-003 **Collection Date:** 9/18/2023 10:34:00 AM

Customer Sample ID: S23-3 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 82 mg/Kg-dry 9/26/2023 1.1 10 D2974 Prep Date: 9/25/2023 Analyst: EPD **Percent Moisture** Percent Moisture 15.5 0.2 wt% 9/26/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

Analytical Results

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Printed:

 $2242 \ West \ Harrison \ St., Suite \ 200, \ Chicago, IL \ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: September 27, 2023 Analytical Results

Customer: Amereco Inc.

September 27, 2023

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Work Order:** 23090607 Revision 0

Lab ID: 23090607-004 **Collection Date:** 9/18/2023 10:50:00 AM

Customer Sample ID: S23-4 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 24 mg/Kg-dry 9/26/2023 1.0 10 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD 9/26/2023 Percent Moisture 12.4 0.2 wt%

Lab ID: 23090607-005 **Collection Date:** 9/18/2023 10:57:00 AM

Customer Sample ID: S23-5 Matrix: Soil

Result RL Qualifier Units **Analyses** DF **Date Analyzed** Prep Date: 9/26/2023 Metals by ICP/MS SW6020A (SW3050B) Analyst: MDS IEPA ELAP 100445 Arsenic 18 1.1 mg/Kg-dry 10 9/26/2023 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD Percent Moisture 11.4 0.2 wt% 9/26/2023

Lab ID: 23090607-006 **Collection Date:** 9/18/2023 10:43:00 AM

Customer Sample ID: S23-6 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 9.5 mg/Kg-dry 9/26/2023 1.1 10 D2974 Prep Date: 9/25/2023 Analyst: EPD **Percent Moisture** Percent Moisture 16.6 0.2 wt% 9/26/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

 $2242\ West\ Harrison\ St., Suite\ 200,\ Chicago,\ IL\ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: September 27, 2023

Date Printed: September 27, 2023

Customer: Amereco Inc.

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Work Order:** 23090607 Revision 0

Lab ID: 23090607-007 **Collection Date:** 9/18/2023 11:02:00 AM

Customer Sample ID: S23-7 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 5.5 mg/Kg-dry 9/26/2023 1.1 10 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD 9/26/2023 Percent Moisture 10.9 0.2 wt%

Lab ID: 23090607-008 **Collection Date:** 9/18/2023 11:11:00 AM

Customer Sample ID: S23-8 Matrix: Soil

Result RL Qualifier Units **Analyses** DF **Date Analyzed** Prep Date: 9/26/2023 Metals by ICP/MS SW6020A (SW3050B) Analyst: MDS IEPA ELAP 100445 Arsenic 7.5 1.1 mg/Kg-dry 10 9/26/2023 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD Percent Moisture 14.9 0.2 wt% 9/26/2023

Lab ID: 23090607-009 **Collection Date:** 9/18/2023 11:25:00 AM

Customer Sample ID: S23-9 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 12 mg/Kg-dry 9/26/2023 1.1 10 D2974 Prep Date: 9/25/2023 Analyst: EPD **Percent Moisture** Percent Moisture 14.8 0.2 wt% 9/26/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

Analytical Results

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Printed:

 $2242\ West\ Harrison\ St., Suite\ 200,\ Chicago,\ IL\ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: September 27, 2023 **Analytical Results**

Customer: Amereco Inc.

September 27, 2023

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Work Order:** 23090607 Revision 0

Lab ID: 23090607-010 **Collection Date:** 9/18/2023 11:10:00 AM

Customer Sample ID: S23-10 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 21 mg/Kg-dry 9/26/2023 1.2 10 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD 20.1 9/26/2023 Percent Moisture 0.2 wt%

Lab ID: 23090607-017 **Collection Date:** 9/18/2023 12:41:00 PM

Customer Sample ID: S23-17 Matrix: Soil

Result RL Qualifier Units **Analyses** DF **Date Analyzed** SW6020A (SW3050B) Prep Date: 9/26/2023 Metals by ICP/MS Analyst: MDS IEPA ELAP 100445 Arsenic 62 1.2 mg/Kg-dry 10 9/26/2023 **Percent Moisture** D2974 Prep Date: 9/25/2023 Analyst: EPD Percent Moisture 18.8 0.2 wt% 9/26/2023

Lab ID: 23090607-018 **Collection Date:** 9/18/2023 12:23:00 PM

Customer Sample ID: S23-18 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/26/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 45 mg/Kg-dry 9/26/2023 1.1 10 D2974 Prep Date: 9/25/2023 Analyst: EPD **Percent Moisture** Percent Moisture 8.3 0.2 wt% 9/26/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis

2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis com

e man aun ess. 51711 mjo	ags1A1Anu	iysis.com			CH	IAIN	OF CU	STOI	Y R	RECO)RD				Ν'n	9	301	147		Page:	1	of \	i.
Company: Americo Engineerin	Va .			55 in	in the second special	.vviite a a a a a a a a a a a a a a a a a a a					1				T	T	T	T	ote No.		-		and the state of t
Project Number: 23.2078	/		Clien	t Trac	cking	g No.	:											\	70 110				
Project Name: Brickyard Prop	ertu						-									l		PO	. No.:				
Project Location: Porter, TN	46304					****		1										- 1					
Sampler(s): R. Yester, D. Poll														ļ			ı	100	7182	٤٥.١			
Report To: Zack Heine		Phone:	219.5	21/	252	, 1		1								ı	ĺ	-					
		– Fax:	2010	<u> </u>		<u> </u>		1												and Time			
QC Level: 1 2 _x 3	4	e-mail:	lalica	c. II.	-00	101	COCKA.COM														4 6	<u>5</u> 7 10	
Client Sample Number/Description:		1	Matrix	Comp.	Grab	Preserv.	No. of Containers		Arsmic									Resi	ults Ne	eded:	/	am	/pm
(22)	010.00		1	10			Containers				-				$\perp \perp$		_	Add	litional	Informat	ion:	Lab No	i:
523-1 523-2	9-18-23		5	-	K	A	 '	+	X		-				4-4	_						001	
		10:28	\vdash	-	X	\perp	1		×						$\perp \perp$	\perp						oor	
523-3		10:34		-	×	\dashv	<u> </u>		X						$\bot\bot$							003	
523-4	 	10:50		 	×	_	<u> </u>	1-1	k		-		_			_						PUG	
<u>\$23-5</u>		10:57		-	¥	+	<u> </u>	+	*						$\bot \bot$	_			***************************************			605	
523-6		10:43		-	X	+	l l	+	k		ļ				1	_						006	
S23-7		11:02		-	K	+	1		×		<u> </u>				\bot							007	
\$23-8		10:11	 	-	κ	+	l l	+	۲		<u> </u>				44							008	
523-9		11:25		-	۴	+	<u> </u>	+	x	-				_								004	
523-10		11:10			K	+-	1	 	<u> </u>				_	_ _								pw	
S23-((11:15	1	-	X	_		+	Κ				_			_						9)/	
523-12		11:20		+	χ	_	1	1	<u> </u>						1	\bot						on	Marine Ma Marine Marine Marine Marine Marine Marine Marine Ma Marine Marine Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma
523-13		((:0)		-	人	+		 	4						\bot	_						013	
523-14		12:09		-	X	\perp	1	1 	4				_			_						94	
523-15	<u> </u>	12:34		1	Х	-	1		4													015	
523-16 523-17		12:48		\perp	X	+-			<u> </u>	_												Ol.	610000
		12:41			X		<u> </u>	X	-			_								**		017	
523-18	<u> </u>	12:23		-	×	<u> </u>		1 1	4		_		_			\perp						018	
				-				-								4						Acceptance	
Relinquished by: (Signature) Rus 4	>		Date/	Time:	9-1	9-7	3	Comm	ents:									Labo	ratory	Work O	andon I	VI.a.	
Received by: (Signature) UPS			Date/	Time:	****	***************************************				,													
Relinquished by: (Signature)	039487	2957	Date/		***************************************														23	090	60	フ	
Received by: (Signature)	2		Date/	Гime:	9-20.	2023	15.20											-				No D	ᅱ
Relinquished by: (Signature)			Date/	Time:				Preserv	ation	Code:	A = N	lone	B =	HNO ₃	C = NaC	Н							ᅦ
Received by: (Signature)			Date/	Time:		-									G = Othe				Tempe	erature:	1. 1.	. 1 °C	

Sample Receipt Checklist

Customer: AMERECO					Date and Tin	ne Received:	9/20/2023 1:20:00 PM
Work Order Number 2309	90607				Received by:	JMH	
Checklist completed by:	L 2	9 - L	.0-2	023	Reviewed by	Initials	9/21/2023 Date
Matrix:	Carr	ier name	UPS	<u> </u>			·
Shipping container/cooler in (good condition?		Yes	✓	No 🗌	Not Present	
Custody seals intact on shipp	ping container/cooler?		Yes		No 🗌	Not Present	✓
Custody seals intact on samp	ple bottles?		Yes		No 🗌	Not Present	
Chain of custody present?			Yes	✓	No 🗌		
Chain of custody signed whe	n relinquished and received?		Yes	✓	No 🗌		
Chain of custody agrees with	sample labels/containers?		Yes	~	No 🗌		
Samples in proper container/	bottle?		Yes	✓	No 🗌		
Sample containers intact?			Yes	V	No 🗌		
Sufficient sample volume for	indicated test?		Yes	✓	No 🗌		
All samples received within h	olding time?		Yes	✓	No 🗌	. 4	
Container or Temp Blank tem	perature in compliance?		Yes	~	No 🗌	Temper	ature Ambient °C
Water - VOA vials have zero	headspace? No VOA	vials subm	itted		Yes 💹	No 🔳	
Water - Samples pH checked	?		Yes		No 💹	Checked by:	
Water - Samples properly pre	served?		Yes		No 💹	pH Adjusted?	
Any No response must be det	ailed in the comments section	below.					
Comments:						: .	
				,			
Customer / Person	Date contac	ted:			Contac	ated by:	
contacted:	7				Contac	cted by:	
Response:			. ; :	34		Chape	
						4.7	

Project - Brickyard #23.2078 - Sample Hold Request

Daniel Pollock <dpollock@amerecoeng.com>

Thu 9/21/2023 11:31 AM

To:Justice Kwateng <jkwateng@TheSterlingLab.com>;Craig Chawla <cchawla@TheSterlingLab.com> Cc:Zack Heine <zheine@amerecoeng.com>;Ross Yeater <ryeater@amerecoeng.com> Justice and Craig,

We shipped some samples to you for analysis. Project # 23.2078, P.O. #091823.1, Project – Brickyard Property.

I'm not sure if you have received them yet but we would like to place a hold on the analysis for a few of them. Please hold the analysis of the following samples:

- S23-11
- S23-12
- S23-13
- S23-14
- S23-15
- S23-16

Thank you,

-Daniel

Daniel Pollock Project Manager Amereco Engineering 54 Michigan Ave. Valparaiso, IN 46383 219.531.0531 Customer: Amereco Inc. Analytical QC Summary Report

Work Order: 23090607

Project: 23.2078, Brickyard Property, Porter, IN. 46304 BatchID: 153359

Prep Batch Summary

Sample ID	Matrix	pН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
IMBS1 9/26/23			1.072	0	0	50	46.642	9/26/2023	9/26/2023
ILCSS1 9/26/23			1.039	0	0	50	48.123	9/26/2023	9/26/2023
23090607-001A	Soil		1.142	0	0	50	43.783	9/26/2023	9/26/2023
23090607-002A	Soil		1.021	0	0	50	48.972	9/26/2023	9/26/2023
23090607-003A	Soil		1.03	0	0	50	48.544	9/26/2023	9/26/2023
23090607-004A	Soil		1.094	0	0	50	45.704	9/26/2023	9/26/2023
23090607-005A	Soil		1.072	0	0	50	46.642	9/26/2023	9/26/2023
23090607-006A	Soil		1.115	0	0	50	44.843	9/26/2023	9/26/2023
23090607-007A	Soil		1.035	0	0	50	48.309	9/26/2023	9/26/2023
23090607-008A	Soil		1.118	0	0	50	44.723	9/26/2023	9/26/2023
23090607-009A	Soil		1.031	0	0	50	48.497	9/26/2023	9/26/2023
23090607-010A	Soil		1.051	0	0	50	47.574	9/26/2023	9/26/2023
23090607-011A	Soil		1.183	0	0	50	42.265	9/26/2023	9/26/2023
23090607-012A	Soil		1.195	0	0	50	41.841	9/26/2023	9/26/2023
23090607-013A	Soil		1.055	0	0	50	47.393	9/26/2023	9/26/2023
23090607-014A	Soil		1.143	0	0	50	43.745	9/26/2023	9/26/2023
23090607-015A	Soil		1.138	0	0	50	43.937	9/26/2023	9/26/2023
23090607-016A	Soil		1.098	0	0	50	45.537	9/26/2023	9/26/2023
23090607-017A	Soil		1.042	0	0	50	47.985	9/26/2023	9/26/2023
23090607-018A	Soil		1.02	0	0	50	49.020	9/26/2023	9/26/2023
23090699-001B	Soil		1.039	0	0	50	48.123	9/26/2023	9/26/2023
23090565-009B	Soil		1.153	0	0	50	43.365	9/26/2023	9/26/2023
23090607-007AMS	Soil		1.011	0	0	50	49.456	9/26/2023	9/26/2023
23090607-007AMSD	Soil		1.011	0	0	50	49.456	9/26/2023	9/26/2023

QC Summary

Q C Summar y												
Sample ID: IMBS1 9/26/23	Customer ID:	SampType: MBLK	Units: mg/Kg		TestNo: SW6020A	Prep Date 9/26/2023	•	is Date: 26/2023		Run ID PMS-4_23		SeqNo: 5949101
Analyte		Result	3 3	PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		ND		0.47								
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	SeqNo:
ILCSS1 9/26/23	ZZZZZ	LCS	mg/Kg		SW6020A	9/26/2023	3 9/	26/2023	IC	PMS-4_23	0926B	5949102
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		25.53		0.48	24.06	0	106	80	120	0	0	
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	SeqNo:
23090607-007AMS	S23-7	MS I	mg/Kg-dr	у	SW6020A	9/26/2023	3 9/	26/2023	IC	PMS-4_23	0926B	5949118
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		33.8		1.1	27.75	5.455	102	75	125	0	0	
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	SeqNo:
23090607-007AMSD	S23-7	MSD I	mg/Kg-dr	у	SW6020A	9/26/2023	3 9/	26/2023	IC	PMS-4_23	0926B	5949119
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		33.65		1.1	27.75	5.455	102	75	125	33.8	0.454	20

Metals

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Customer: Amereco Inc.

23090607

Work Order:

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Analytical QC Summary Report**

Wet Chemistry BatchID: R202161

Analyti	cal Run Su	ımmary												
SeqNo	Sample ID	•	Type	Te	est Code	е Ва	atch	DF			Date An	alyzed		
5947804	PMMBLK1 9	/25/23	MBLK	PMOIST	Ī	R20	02161	1			09/26/2	2023		•
5947805	PMLCSS1 9/	/25/23	LCS	PMOIST	Γ	R20	02161	1	09/26/2023					
5947806	PMLCSW1 9	9/25/23	LCS	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947807	23090580-00)4B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947808	23090683-00)1A	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947809	23090569-00)1A	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947810	23090646-00)1A	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947811	23090646-00)2A	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947812	23090649-00)1B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947813	23090649-00	1BDUP	DUP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947814	23090649-00)2B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947815	23090650-00)1B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947816	23090652-00)1B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947817	23090592-00)1B	SAMP	PMOIST	Γ	R20	02161	1			09/26/2	2023		
5947818	23090592-00)2B	SAMP	PMOIST	Г	R20	02161	1			09/26/2	2023		
5947819	23090592-00)3B	SAMP	PMOIST			02161	1			09/26/2			
5947820	23090592-00	04B	SAMP	PMOIST	Г	R20	02161	1			09/26/2	2023		
5947821	23090607-00)1A	SAMP	PMOIST			02161	1			09/26/2			
5947822	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5947823	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5947824	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5947825	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5947826	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5947827	23090607-00		SAMP	PMOIST			02161	1			09/26/2			
5948951	23090569-00		SAMP	PSOLID			02161	1			09/27/2			
QC Sun	nmary													
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	· Analys	is Date		Run ID).	5	SeqNo:
	(1 9/25/23	ZZZZZ	MBLK	wt%		D2974	9/25/202		26/2023		LANCE_2			47804
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moieture		ND		0.200				Liiiiii	Liiiiii	T(C) Vai			*
		0 / 15			0.200									1
Sample II PMLCSS		Customer ID: ZZZZZ	SampType: LCS	Units: wt%		TestNo: D2974	Prep Date 9/25/202	-	is Date: 26/2023		Run ID			SeqNo: 947805
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		4.92		0.200	5	0	98.4	80	120	0	0		*
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID):	S	SeqNo:
PMLCSW	/1 9/25/23	ZZZZZ	LCS	wt%		D2974	9/25/202	•	26/2023	ВА	LANCE_2	30925A	59	47806
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		99.82		0.200	99.8	0	100	80	120	0	0		*
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID):	S	SeqNo:
23090649	9-001BDUP	ZZZZZ	DUP	wt%		D2974	9/25/202	3 9/2	26/2023	ВА	LANCE_2	30925A		47813
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		15.64		0.200	0	0	0	0	0	16	2.28	20	*

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Customer: Amereco Inc.

23090607

Work Order:

Project: 23.2078, Brickyard Property, Porter, IN. 46304 **Analytical QC Summary Report**

Wet Chemistry BatchID: R202162

Analyti	cal Run Su	ımmary												
SeqNo	Sample ID	•	Type	Te	est Code	в Ва	tch	DF			Date An	alyzed		
5947828	PMMBLK2 9	/25/23	MBLK	PMOIST	Ī	R20	02162	1			09/26/2	2023		
5947829	PMLCSS2 9/	/25/23	LCS	PMOIST	Γ	R20	02162	1	09/26/2023					
5947830	PMLCSW2 9	9/25/23	LCS	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947831	23090607-00	08A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947832	23090607-00	8ADUP	DUP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947833	23090607-00)9A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947834	23090607-01	10A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947835	23090607-01	11A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947836	23090607-01	12A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947837	23090607-01	13A	SAMP	PMOIST	Г	R20	02162	1			09/26/2	2023		
5947838	23090607-01	14A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947839	23090607-01	15A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947840	23090607-01	16A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947841	23090607-01	17A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947842	23090607-01	18A	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947843	23090664-00)1B	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947844	23090664-00)2B	SAMP	PMOIST	Г	R20	02162	1			09/26/2	2023		
5947845	23090664-00)3B	SAMP	PMOIST		R20	02162	1			09/26/2	2023		
5947846	23090664-00)4B	SAMP	PMOIST	Γ	R20	02162	1			09/26/2	2023		
5947847	23090664-00		SAMP	PMOIST	Γ		02162	1			09/26/2			
5947848	23090664-00		SAMP	PMOIST			02162	1			09/26/2			
5947849	23090608-00		SAMP	PMOIST			02162	1			09/26/2			
5947850	23090608-00		SAMP	PMOIST			02162	1			09/26/2			
5948952	23090608-00		SAMP	PSOLID			02162	1			09/27/2			
5948953	23090608-00		SAMP	PSOLID			02162	1			09/27/2			
QC Sur	nmary													
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	e: Analys	is Date:		Run ID	:	S	SeqNo:
	(2 9/25/23	ZZZZZ	MBLK	wt%		D2974	9/25/202	-	26/2023		LANCE_2			47828
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		ND		0.200					Liiiiii	Ttor var			*
		0 1 10		11.7	0.200	T (1)	D D :				D 15			
Sample II PMLCSS		Customer ID: ZZZZZ	SampType: LCS	Units: wt%		TestNo: D2974	Prep Date 9/25/202	-	is Date: 26/2023		Run ID LANCE_2			SeqNo: 47829
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		4.7		0.200	5	0	94	80	120	0	0		*
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	e: Analys	is Date:		Run ID	:	S	SeqNo:
PMLCSW	/2 9/25/23	ZZZZZ	LCS	wt%		D2974	9/25/202	•	26/2023	ВА	LANCE_2	30925B	59	47830
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		99.81		0.200	99.8	0	100	80	120	0	0		*
Sample II	D:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	e: Analys	is Date:		Run ID	:	S	SeqNo:
23090607	7-008ADUP	S23-8	DUP	wt%		D2974	9/25/202	3 9/2	26/2023	ВА	LANCE_2	30925B	59	47832
Analyte			Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Percent N	Moisture		14.59		0.200	0	0	0	0	0	14.93	2.30	20	*

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits * - Non Accredited Parameter

30105 Beverly Road Romulus, MI 48174

Ph: 734-629-8161; Fax: 734-629-8431

REVISED REPORT

Certificate of Analysis: Lead In Soil by EPA SW-846 7000B and 3050B Method*

Client: Americo Engineering AAT Project: 952901

 54 Michigan Avenue
 Sampling Date : 09/18/2023

 Valparaiso, IN 46383
 Date Received : 09/20/2023

 Attn :
 Zach Heine
 Email : labresults@amerecoeng.com
 Date Analyzed : 09/21/2023

 Phone :
 219-531-0531
 Fax :
 Date Reported : 09/22/2023

Client Project: 23.2078

Project Location: BRICKYARD PROPERTY PORTER IN

Lab Sample ID	Client Code	Sample Description	Results Lead μg/g (PPM)	Calculated RL μg/g *
8765855	S23-1	1016	336	10.1
8765856	S23-2	1028	497	9.75
8765857	S23-3	1034	357	10.5
8765858	S23-4	1050	198	10.0
8765859	S23-5	1057	363	10.4
8765860	S23-6	1043	46.8	10.3
8765861	S23-7	1102	<9.92	9.92
8765862	S23-8	1111	16.9	10.3
8765863	S23-9	1125	16.7	10.3
8765868	S23-17	1241	412	10.1
8765869	S23-18	1223	855	9.82

^{13, 14, 15, 16} removed from report per client email 9-21

Analyst Signature

Nathan Ditty

*RL= Reporting Limit * For true values assume (3) significant figures. The method and batch QC are acceptable unless otherwise stated. Current EPA/HUD Interim Standard for soil samples are: 400 PPM (parts per million) for play area's, 1200 PPM for building Perimeters and 1000 PPM for California Building Perimeters. AAT internal sop S204. The laboratory operates in accord with ISO 17025 guidelines and holds limited scopes of accreditation under AlHA-LAP and NY State DOH ELAP programs. These results are submitted pursuant to AAT LLC current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. Analytical results relate to the samples as received by the lab. AAT will not assume any liability or responsibility for the manner in which the results are used or interpreted. Reproduction of this document other than in its entirety is not permitted. AAT does not blank correct reported values. Sample data apply only to items analyzed. Samples are stored for 15 days following report date. **eValidated modified method

AIHA LAP- Lab ID #100986, NY State DOH ELAP -Lab ID #11864, State of Ohio- Lab ID # 10042

Date Printed: 09/22/2023 9:20AM AAT Project: 952901

30105 Beverly Road Romulus, MI 48174

AAT Project: 952901

Client Project: 23.2078

Date Reported: 09/22/2023

Ph: 734-629-8161; Fax: 734-629-8431

To: Amereco Engineering

Attn:

54 Michigan Avenue Valparaiso, IN 46383

Zach Heine Email: labresults@amerecoeng.com

Phone: 219-531-0531

Project Location: BRICKYARD PROPERTY PORTER IN

Sample	Client Code	Analysis Requested	Completed	Analyst
8765855	S23-1	Lead Soil	09/21/2023	Nathan Ditty
8765856	S23-2	Lead Soil	09/21/2023	Nathan Ditty
8765857	S23-3	Lead Soil	09/21/2023	Nathan Ditty
8765858	S23-4	Lead Soil	09/21/2023	Nathan Ditty
8765859	S23-5	Lead Soil	09/21/2023	Nathan Ditty
8765860	S23-6	Lead Soil	09/21/2023	Nathan Ditty
8765861	S23-7	Lead Soil	09/21/2023	Nathan Ditty
8765862	S23-8	Lead Soil	09/21/2023	Nathan Ditty
8765863	S23-9	Lead Soil	09/21/2023	Nathan Ditty
8765868	S23-17	Lead Soil	09/21/2023	Nathan Ditty
8765869	S23-18	Lead Soil	09/21/2023	Nathan Ditty

Reviewed By

Elyse Bidle

Quality Assurance Coordinator

Elype Belle

Revision History

Job#	Sample	Revision Date	Revised By	Comment	
952901	0	09/22/2023	Lauren Groff	+unclear coc	

This report is intended for use solely by the individual or entity to which it is addressed. It may contain information that is privileged, confidential and otherwise exempt by law from disclosure. If the reader of this information is not the intended recipient or an employee of its intended recipient, you are herewith notified that any dissemination, distribution or copying of this information is strictly prohibited. If you have received this information in error, please notify AAT immediately. Thank you.

ACREDITED LABORATORY
DISPONSITIALED
MONES TRANSPOR

WHI STRANSPOR
LABORATORY
LABORATORY

SUBMITTING COMPANY Amereco Engineering

54 Michigan Avenue Valparaiso, IN 46383

CONTACT INFORMATION Zack Heine

Phone:(219)-531-0531

Cell:

Fax:

(734) 699-LABS (5227)

www.accurate-test.com

				PO #	091823.1		Ema	il:labres	sults@amerecoeng.com
PROJECT NUMBER	23.2078	Sampling Date:	9-18-2023	REQUES	TED ANALYSIS	LEAD	Request Turnard	ound time	e (please check one)
PROJECT ADDRESS	Brickyard P	roperty, Porter	IN		GLE WIPE DUST	()	SAME DAY ()	24 Hour ()
SAMPLE START TIME	SAMI	PLE END TIME		-	PAINT CHIP	(<) % By Wt. () mg/cm²()	48 Hour ()	3 days (🗶)

LAB ID	Client SAMPLE ID	Room	Substrate	- side Time	WS, WT, F	WIPE AREA (e.g. 12 X 12)	CLIENT COMMENTS
LN6955	523-1		Soil	10:16	-	X	Risk Assessor: R. Yester D. Pollock
0-201011	S23-Z			10:28	-	Χ	Samples shipped
	523-3			10:34	_	X	
	523-4			10:50	- 1	X	
\$23- \$23- \$23-	523-5			10:57	_	X	SAMPLE CONDITION
	523-6			(0:43	_	X	SEALS INTACT Y N
	523-7			11:02	_	X	PRESERVATIVES Y N
	523-8			(1:11	_	Х	CONTAINERS LABELED Y N
	523-9			11:25	-	X	LAB REMARKS
	523-13			11:501		X	
At in the	523-14			12:09	-	X	2611
	523-15			12:34	-	X	Zall LAB PROJECT Q52401
MANUFACTURE.	523-16			12:48	-	X	00000
	523-17			12:41	_	Χ	LAB PROJECT Q52401
:	SAMPLES RELINQUISHED	D BY		SA	MPLES RECEI	VED BY	TIME
	Re U						AM PA
1 cc	C						AM PA
			1			DW	SEP 2 0 2023 /AM PA

Romulus, MI 48174

(734) 699-LABS (5227)

FAX: (734) 699-8407

www.accurate-test.com

SUBMITTING COMPANY Amereco Engineering

54 Michigan Avenue Valparaiso, IN 46383

CONTACT INFORMATION Zack Heine

Phone:(219)-531-0531 Cell:

Fax:

Email:labresults@amerecoeng.com

				PO#	091823.		Ema	l:labres	ults@amere	ecoen	g.com
PROJECT NUMBER	23.1078	Sampling Date:	9-18-2023	REQUES	TED ANALYSIS	LEAD	Request Turnard	und time	e (please che	ck one	⊜)
PROJECT ADDRESS	Brideyard Pr	operty Porter	IN		GLE WIPE DUST	()	SAME DAY ()	24 Hour	()
SAMPLE START TIME	SAM	PLE END TIME			OMPOSITE SOIL	(>)	48 Hour ()	3 days	(×	c)
	-				DAINT CHID	% By Wt. () mg/cm²()					

LAB ID	Client SAMPLE ID	Room	Substrate	Side Tine	WS, WT, F	WIPE AREA (e.g. 12 X 12)		COMMENTS	. 1
	523-18		soil	12:23	=	X	Risk Assessor: Ry	ter, D. Holl	oce
						X	Samples shipped		
						X			
	8					Χ			
						X	SAMPLE	CONDITION	
						X	SEALS INTACT	YN	
						X	PRESERVATIVES	YN	
						Х	CONTAINERS LABELED	Y N	
						X	LAB REMARKS		
						X			
- 0200						Х			
12 17 1						Х			77
						Х			
						Χ	LAB PROJECT NUMBER	S. Lenselly	
	SAMPLES REUNQUISHE	D BY		S	AMPLES RECEI	VED BY		TIME	
	Ph 1/2							AM	F
	7							AM	F
						Am	SEP 2 0 2023	1/\AM	P

30105 Beverly Road Romulus, MI 48174

Ph: 734-629-8161; Fax: 734-629-8431

Certificate of Analysis: Lead In Soil by EPA SW-846 7000B and 3050B Method*

Client: Amereco Engineering AAT Project: 954696

 54 Michigan Avenue
 Sampling Date : 09/22/2023

 Valparaiso, IN 46383
 Date Received : 09/25/2023

 Attn :
 Zach Heine
 Email : labresults@amerecoeng.com
 Date Analyzed : 09/27/2023

 Phone :
 219-531-0531
 Fax :
 Date Reported : 09/27/2023

Client Project: 23.2078

Project Location: BRICKYARD

Lab Sample ID	Client Code	Sample Description	Results Lead μg/g (PPM)	Calculated RL μg/g *
8775692	S23-13	SOIL 749	2220	10.1
8775693	S23-14	SOIL 805	409	9.94
8775694	S23-15	SOIL 825	421	10.2
8775695	S23-16	SOIL 837	205	9.96
8775696	S3-18B	SOIL 905	28.4	10.1

Analyst Signature

Nathan Ditty

*RL= Reporting Limit * For true values assume (3) significant figures. The method and batch QC are acceptable unless otherwise stated. Current EPA/HUD Interim Standard for soil samples are: 400 PPM (parts per million) for play area's, 1200 PPM for building Perimeters and 1000 PPM for California Building Perimeters. AAT internal sop S204. The laboratory operates in accord with ISO 17025 guidelines and holds limited scopes of accreditation under AlHA-LAP and NY State DOH ELAP programs. These results are submitted pursuant to AAT LLC current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. Analytical results relate to the samples as received by the lab. AAT will not assume any liability or responsibility for the manner in which the results are used or interpreted. Reproduction of this document other than in its entirety is not permitted. AAT does not blank correct reported values. Sample data apply only to items analyzed. Samples are stored for 15 days following report date. *= Validated modified method

AIHA LAP- Lab ID #100986, NY State DOH ELAP -Lab ID #11864, State of Ohio- Lab ID # 10042

Date Printed: 09/27/2023 1:34PM AAT Project: 954696

30105 Beverly Road Romulus, MI 48174

AAT Project: 954696

Client Project: 23.2078

Date Reported: 09/27/2023

Ph: 734-629-8161; Fax: 734-629-8431

To: Amereco Engineering

Attn:

54 Michigan Avenue Valparaiso, IN 46383

Email: labresults@amerecoeng.com

Phone: 219-531-0531

Project Location: BRICKYARD

Zach Heine

Sample	Client Code	Analysis Requested	Completed	Analyst
8775692	S23-13	Lead Soil	09/27/2023	Nathan Ditty
8775693	S23-14	Lead Soil	09/27/2023	Nathan Ditty
8775694	S23-15	Lead Soil	09/27/2023	Nathan Ditty
8775695	S23-16	Lead Soil	09/27/2023	Nathan Ditty
8775696	S3-18B	Lead Soil	09/27/2023	Nathan Ditty

Reviewed By

Elyse Bidle

Elype B Sle

Quality Assurance Coordinator

This report is intended for use solely by the individual or entity to which it is addressed. It may contain information that is privileged, confidential and otherwise exempt by law from disclosure. If the reader of this information is not the intended recipient or an employee of its intended recipient, you are herewith notified that any dissemination, distribution or copying of this information is strictly prohibited. If you have received this information in error, please notify AAT immediately. Thank you.

SAMPLE START TIME

ACCURATE ANALYTICAL TESTING LLC 30105 Beverly Road

SAMPLE END TIME

Romulus, MI 48174

(734) 699-LABS (5227)

FAX: (734) 699-8407

www.accurate-test.com

AJHA LAP, LLC

ACCREDITED LABORATORY

DISTRIBUTE, LR.

BOAGS 17075-2001

THE PROPERTY OF THE P

SUBMITTING COMPANY Amereco Engineering

54 Michigan Avenue Valparaiso, IN 46383

% By Wt ()

mg/cm²(

COMPOSITE SOIL

PAINT CHIP

CONTACT INFORMATION Zack Heine

Phone:(219)-531-0531 Cell:

3 days

Fax:

48 Hour (

				PO# 092023		Email	labresul	its@amerecoeng.
PROJECT NUMBER	23.2078	Sampling Date:	9.22.23	REQUESTED ANALYSIS	LEAD	Request Turnarou	nd time (please check one)
PROJECT ADDRESS	Boickward			SINGLE WIPE DUST	()	SAME DAY)	24 Hour (

Time CLIENT COMMENTS Client SAMPLE WS, WT, F Side Room -Substrate • WIPE AREA (e.g. 12 X 12) LABID Risk Assessor: 7:49 523-13 50'1 X Samples shipped X 523-14 Sail 8:05 8:25 X Sol 523-15 8:37 X 528-16 SAMPLE CONDITION Soil 9:05 X 53-1813 SEALS INTACT. X PRESERVATIVES " X CONTAINERS LABELED X LAB REMARKS X X X X X LAB PROJECT X NUMBER TIME SAMPLES RECEIVED BY SAMPLES RELINQUISHED BY PM 4.30 AM SEP 2 5 2023 Rebecca Davis PM AM Accurate Analytical Testing MA PM

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

October 02, 2023

Amereco Inc. 54 Michigan Avenue Valparaiso, IN 46383 Telephone: (219) 531-0531

Fax: (219) 464-9166

Analytical Report for Work Order: 23090689 Revision 0

RE: 23.2078, Brickyard, Porter, IN

Dear Amereco Inc.:

Sterling Labs received 6 samples for the referenced project on 9/25/2023 1:14:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with methods as referenced on the analytical report and were performed within established holding time criteria. All Quality Control criteria met TNI or laboratory specifications except when noted in the Case Narrative, Analytical Report or Sample Receipt Checklist. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. Sterling labs is not responsible for customer provided information found in the report that is used to calculate final results. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, Sterling Labs will be under no obligation to support, defend or discuss the analytical report.

Sterling Date: October 02, 2023

Customer: Amereco Inc.

Project: 23.2078, Brickyard, Porter, IN Work Order Sample Summary

Work Order: 23090689 Revision 0

Lab Sample ID	Customer Sample ID	Tag Number	Collection Date	Date Received
23090689-001A	S23-11		9/22/2023 7:25:00 AM	9/25/2023
23090689-002A	S23-12		9/22/2023 7:36:00 AM	9/25/2023
23090689-003A	S23-13		9/22/2023 7:49:00 AM	9/25/2023
23090689-004A	S23-14		9/22/2023 8:05:00 AM	9/25/2023
23090689-005A	S23-15		9/22/2023 8:25:00 AM	9/25/2023
23090689-006A	S23-16		9/22/2023 8:37:00 AM	9/25/2023

Date: October 02, 2023

Case Narrative

Customer: Amereco Inc.

Project: 23.2078, Brickyard, Porter, IN

Work Order: 23090689 Revision 0

Please refer to Analytical QC Summary Report for QC outliers.

LCS(D) - Lab Control Sample (Duplicate)
MS(D) - Matrix Spike (Duplicate)
RPD - Relative Percent Difference

VOC - Volatile Organic Compound SVOC - Semi-Volatile Organic Compound PNA/PAH - Polynuclear Aromatic Hydrocarbon

PCB - Polychlorinated Biphenyls

 $2242\ West\ Harrison\ St., Suite\ 200,\ Chicago,\ IL\ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: October 02, 2023

Date Printed: October 02, 2023

Analytical Results

Customer: Amereco Inc.

Project: 23.2078, Brickyard, Porter, IN Work Order: 23090689 Revision 0

Lab ID: 23090689-001 **Collection Date:** 9/22/2023 7:25:00 AM

Customer Sample ID: S23-11 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/28/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 25 mg/Kg-dry 9/29/2023 1.0 10 **Percent Moisture** D2974 Prep Date: 9/26/2023 Analyst: EPD 9/27/2023 Percent Moisture 10.3 0.2 wt%

Lab ID: 23090689-002 **Collection Date:** 9/22/2023 7:36:00 AM

Customer Sample ID: S23-12 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** SW6020A (SW3050B) Prep Date: 9/28/2023 Metals by ICP/MS Analyst: MDS IEPA ELAP 100445 Arsenic 1.1 mg/Kg-dry 10 9/29/2023 **Percent Moisture** D2974 Prep Date: 9/26/2023 Analyst: EPD Percent Moisture 14.4 0.2 wt% 9/27/2023

Lab ID: 23090689-003 **Collection Date:** 9/22/2023 7:49:00 AM

Customer Sample ID: S23-13 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/28/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 83 mg/Kg-dry 9/29/2023 1.2 10 D2974 Prep Date: 9/26/2023 Analyst: EPD **Percent Moisture** Percent Moisture 16.4 0.2 wt% 9/27/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

 $2242\ West\ Harrison\ St., Suite\ 200,\ Chicago,\ IL\ 60612\text{-}3766$

Tel: (312) 733-0551 Fax: (312) 733-2386 Info@TheSterlingLab.com

Date Reported: October 02, 2023

Date Printed: October 02, 2023

Analytical Results

Customer: Amereco Inc.

Project: 23.2078, Brickyard, Porter, IN **Work Order:** 23090689 Revision 0

Lab ID: 23090689-004 **Collection Date:** 9/22/2023 8:05:00 AM

Customer Sample ID: S23-14 Matrix: Soil

Analyses Result **RL Qualifier Units** DF **Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/28/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 150 mg/Kg-dry 9/29/2023 1.1 10 **Percent Moisture** D2974 Prep Date: 9/26/2023 Analyst: EPD 9/27/2023 Percent Moisture 14.4 0.2 wt%

Lab ID: 23090689-005 **Collection Date:** 9/22/2023 8:25:00 AM

Customer Sample ID: S23-15 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** SW6020A (SW3050B) Prep Date: 9/29/2023 Metals by ICP/MS Analyst: MDS IEPA ELAP 100445 Arsenic 1.1 mg/Kg-dry 10 9/30/2023 **Percent Moisture** D2974 Prep Date: 9/26/2023 Analyst: EPD Percent Moisture 17.5 0.2 wt% 9/27/2023

Lab ID: 23090689-006 **Collection Date:** 9/22/2023 8:37:00 AM

Customer Sample ID: S23-16 Matrix: Soil

Result RL Qualifier Units DF **Analyses Date Analyzed** Metals by ICP/MS SW6020A (SW3050B) Prep Date: 9/28/2023 Analyst: MDS IEPA ELAP 100445 Arsenic 14 mg/Kg-dry 9/29/2023 1.1 10 D2974 Prep Date: 9/26/2023 Analyst: EPD **Percent Moisture** Percent Moisture 20.5 0.2 wt% 9/27/2023

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT	Analysis
------	----------

2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com

e-mail address: STATinfo(@STA	TAnai	lysis.com		none.			OF CU					RD		-	Nº:	9	375	004	_ Page : _	1 00	. 1
Company: Amereco, eng						Married States			Ĩ	Ť	T			T				TT			lof	
Project Number: 23, 2078				Clie	nt Tra	ckin	g No.									***************************************			Quote	e No.:		
Project Name: Briellyard			***************************************				2	•1												ь т		·
Project Location: Portr, IN			***************************************				-												P.O. 1	No.:		
Sampler(s): Daniel Pallo	ch		7/																6	92223.	and the same of th	
Report To: Zadl Hima			Phone:	219.	531.0	522	1												Turn	Around Time (I	Jave).	*************************************
			Fax:						J	ار									1	2 3 4		10
QC Level: 1 2 X 3	4		e-mail: [ende.	4115	261	20186	:0141.10-	2	:									1	ts Needed:		10
Client Sample Number/Description:	Date	Taken		Matrix	Comp.		Preserv.	No. of Containers	V	?												am/pm
523-11	9.22	23	Ba:7:25	1	+	×	A	+,	X	_	\vdash	\vdash	+	-	+	++	_	++	Addit	ional Information	255000000000000000	b No.:
523-12	1		7:36	1	+-	 	1	1.	X	_			\dashv	+	-	++		++			00	
523-13			7:49		+	H	\vdash	++-	X	1	\vdash	\vdash		\dashv	-	++		++			007	
523-14			8:65		+	H	\vdash	++-	X		\vdash	\vdash	_	+		++	_	++			003	
523 - 15		 	8:25		+	H	$\vdash \vdash$	_	X		\vdash		+	+	-	++	_	++			000	
523 - 16	,	1	8:37	1		1	1	 	K		\vdash	\vdash	\dashv	\dashv	\dashv	++	-	++-			005	C
\$_			10.5		+	-			 	\vdash	\vdash	\dashv	+	+	-	++	+	++		***	006	
					1				 	-	\Box	$\neg \dagger$	+	+	-	++	\dashv	++	+		10 Mintellic gas 10 Mintellic gas	Differency codes
									<u> </u>	+		\neg	+	\neg	+	++	_	++	+			
		_			1					\vdash		1	\top	\top	\top	++		+	_			
									ļ ——			寸	\top		+	++	\dashv	+	+		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
									 	\Box		1	\top	\top	+	$\dagger \dagger$	\dashv	+				
										П	1	\exists		\top	\top	T	1	++	—		Property Section	
										П	1					H	\top	1			000000000000000000000000000000000000000	
											1	一	1	1	\top	$\dagger \dagger$	\top					
											\Box				1	TT	1	1			the property of	
				****									T	\top				1			F 10 C 10	Service of Algorithms
																					2.75 (2.55)	
																					1137690018660	
telinquished by: (Signature)	$\sum_{i=1}^{n}$			Date	/Time:	422	7	11,20	7													10 7 60 60 (TSR)
Received by: (Signature)					/Time:	1.61.	23/	4:30	Com	ments	;:								Labora	tory Work Orde	r No.:	
telinquished by: (Signature) 120 149 Fto 0	1000				/Time: /Time:	912	-112	17 11											2.	30906	20	
deceived by: (Signature)	3905	(00)	12					13,14											100 000 Carro (MC000 and	ALL DEFENDENCE EST DOSCUMUNTOS DE MISSON	•	
elinquished by: (Signature)	V		T 10072-15		/Time: '	1165	123	13.14		-							***************************************		Rece	eived on Ice: Ye	S No	۰ 🗸
eceived by: (Signature)					/Time:		P									O_3 $C =$			т	emperature: A _M	him to	,
eceived by: (Signature)				Date	/Time:			i	D =	H_2SO	и Е	= HC	[F =	= 5035	/EnCo	re G=	Other			mpermune. MM	vievi i	<i>J</i>

Sample Receipt Checklist

Customer: AMERECO Work Order Number 23090689		Date and Time Received:	9/25/2023 1:14:00 PM
Work Order Number 23030003		Received by: JMH	
Checklist completed by: Signature	9/25/2015 Date	Reviewed by:	9/25/2523 Date
Matrix:	Carrier name <u>UPS</u>		' / /
Shipping container/cooler in good condition?	Yes 🗸	No Not Present	
Custody seals intact on shipping container/cooler?	Yes	No ☐ Not Present ✔	
Custody seals intact on sample bottles?	Yes	No ☐ Not Present ✔	
Chain of custody present?	Yes 🗸	No 🗌	
Chain of custody signed when relinquished and recei	ved? Yes ✓	No 🗌	
Chain of custody agrees with sample labels/containe	rs? Yes ✓	No 🗌	
Samples in proper container/bottle?	Yes 🗸	No 🗔	
Sample containers intact?	Yes 🗸	No 🗀	
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌	
All samples received within holding time?	Yes 🗸	No 🗌	
Container or Temp Blank temperature in compliance?	? Yes ✓	No Temperatu	re Ambient °C
Water - VOA vials have zero headspace? No	VOA vials submitted	Yes No 🖺	
Water - Samples pH checked?	Yes 💹	No Checked by:	
Water - Samples properly preserved?	Yes 💌	No pH Adjusted?	
Any No response must be detailed in the comments s	section below.		
Comments:			
Customer / Person Date contacted:	contacted:	Contacted by:	
Response:			

Analytical QC Summary Report Customer: Amereco Inc.

Work Order: 23090689

Metals Project: 23.2078, Brickyard, Porter, IN BatchID: 153419

Prep Batch Summary

Sample ID	Matrix	pH SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
IMBS3 9/28/23		1.047	0	0	50	47.755	9/28/2023	9/28/2023
ILCSS3 9/28/23		1.083	0	0	50	46.168	9/28/2023	9/28/2023
23090772-003B	Soil	1.041	0	0	50	48.031	9/28/2023	9/28/2023
23090772-004B	Soil	1.163	0	0	50	42.992	9/28/2023	9/28/2023
23090772-005B	Soil	1.055	0	0	50	47.393	9/28/2023	9/28/2023
23090772-006B	Soil	1.1	0	0	50	45.455	9/28/2023	9/28/2023
23090739-001A	Soil	1.105	0	0	50	45.249	9/28/2023	9/28/2023
23090739-002A	Soil	1.163	0	0	50	42.992	9/28/2023	9/28/2023
23090739-003A	Soil	1.144	0	0	50	43.706	9/28/2023	9/28/2023
23090739-004A	Soil	1.169	0	0	50	42.772	9/28/2023	9/28/2023
23090739-005A	Soil	1.017	0	0	50	49.164	9/28/2023	9/28/2023
23090739-006A	Soil	1.136	0	0	50	44.014	9/28/2023	9/28/2023
23090739-007A	Soil	1.074	0	0	50	46.555	9/28/2023	9/28/2023
23090739-008A	Soil	1.016	0	0	50	49.213	9/28/2023	9/28/2023
23090689-001A	Soil	1.119	0	0	50	44.683	9/28/2023	9/28/2023
23090689-002A	Soil	1.093	0	0	50	45.746	9/28/2023	9/28/2023
23090689-003A	Soil	1.03	0	0	50	48.544	9/28/2023	9/28/2023
23090689-004A	Soil	1.06	0	0	50	47.170	9/28/2023	9/28/2023
23090689-005A	Soil	1.017	0	0	50	49.164	9/28/2023	9/28/2023
23090689-006A	Soil	1.167	0	0	50	42.845	9/28/2023	9/28/2023
23090689-005AMS	Soil	1.052	0	0	50	47.529	9/28/2023	9/28/2023
23090689-005AMSD	Soil	1.048	0	0	50	47.710	9/28/2023	9/28/2023
23090739-009B	Soil	1.145	0	0	50	43.668	9/28/2023	9/28/2023
23090739-010B	Soil	1.134	0	0	50	44.092	9/28/2023	9/28/2023

OC Summary

QC Summary													
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:		SeqNo:
IMBS3 9/28/23	ZZZZZ	MBLK	mg/Kg		SW6020A	9/28/2023	3 9/2	28/2023	IC	PMS-3_23	0928A	59	51121
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic		ND		0.48									
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	S	SeqNo:
ILCSS3 9/28/23	ZZZZ	LCS	mg/Kg		SW6020A	9/28/2023	9/2	28/2023	IC	PMS-3_23	0928A	59	51122
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic		23.95		0.46	23.08	0	104	80	120	0	0		
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	S	SeqNo:
23090689-005AMS	S23-15	MS r	ng/Kg-dr	у	SW6020A	9/28/2023 9/28/2023			IC	ICPMS-3_230928A			51125
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic		58.43		1.2	28.81	75.19	-58.2	75	125	0	0		S
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	S	SeqNo:
23090689-005AMSD	S23-15	MSD r	ng/Kg-dr	у	SW6020A	9/28/2023	9/2	28/2023	IC	PMS-3_23	0928A	59	51129
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic		55.48		1.2	28.92	75.19	-68.1	75	125	58.43	5.18	20	S

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

^{* -} Non Accredited Parameter

Analytical QC Summary Report Customer: Amereco Inc.

Work Order: 23090689

Metals Project: 23.2078, Brickyard, Porter, IN BatchID: 153456

Prep Batch Summary

Sample ID	Matrix	рH	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
IMBS2 9/29/23			1.1	0	0	50	45.455	9/29/2023	9/29/2023
ILCSS2 9/29/23			1.1	0	0	50	45.455	9/29/2023	9/29/2023
23090689-005A	Soil		1.137	0	0	50	43.975	9/29/2023	9/29/2023
23090689-005AMS	Soil		1.191	0	0	50	41.982	9/29/2023	9/29/2023
23090689-005AMSD	Soil		1.11	0	0	50	45.045	9/29/2023	9/29/2023
23090735-007B	Soil		1.104	0	0	50	45.290	9/29/2023	9/29/2023
23090735-008B	Soil		1.104	0	0	50	45.290	9/29/2023	9/29/2023
23090735-009B	Soil		1.105	0	0	50	45.249	9/29/2023	9/29/2023
23090797-001A	Solid		0.233	0	0	50	214.592	9/29/2023	9/29/2023
23090797-002A	Solid		0.131	0	0	50	381.679	9/29/2023	9/29/2023
23090797-003A	Solid		0.075	0	0	50	666.667	9/29/2023	9/29/2023
23090797-004A	Solid		1.104	0	0	50	45.290	9/29/2023	9/29/2023
23090797-005A	Solid		0.894	0	0	50	55.928	9/29/2023	9/29/2023
23090797-006A	Solid		0.528	0	0	50	94.697	9/29/2023	9/29/2023
23090735-007BMS	Soil		1.104	0	0	50	45.290	9/29/2023	9/29/2023
23090735-007BMSD	Soil		1.103	0	0	50	45.331	9/29/2023	9/29/2023
IMDLS1A 9/29/23			1	0	0	50	50.000	9/29/2023	9/29/2023
IMDLS1B 9/29/23			1	0	0	50	50.000	9/29/2023	9/29/2023
IMDLS2A 9/29/23			1	0	0	50	50.000	9/29/2023	9/29/2023
IMDLS2B 9/29/23			1	0	0	50	50.000	9/29/2023	9/29/2023

OC Summary

QC Summary												
Sample ID:	Customer ID:	SampType: MBLK	Units: mg/Kg		TestNo: SW6020A	Prep Date 9/29/202	•	is Date: 30/2023		Run ID PMS-3_23		SeqNo: 5953001
Analyte		Result	99	PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		ND		0.45								
Sample ID: ILCSS2 9/29/23	Customer ID:	SampType: LCS	Units: mg/Kg		TestNo: SW6020A	Prep Date 9/29/202	,	is Date: 30/2023		Run ID PMS-3_23		SeqNo: 5953002
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		24.11		0.45	22.73	0	106	80	120	0	0	
Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Date	: Analys	is Date:		Run ID	:	SeqNo:
23090689-005AMS	S23-15	MS r	ng/Kg-dr	y	SW6020A	9/29/202	3 9/3	30/2023	IC	PMS-4_23	0930A	5953130
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		50.56		1.0	25.44	30.9	77.3	75	125	0	0	
Sample ID: 23090689-005AMSD	Customer ID: S23-15	SampType: MSD r	Units: ng/Kg-dry	y	TestNo: SW6020A	Prep Date 9/29/202	•	is Date: 30/2023		Run ID PMS-4_23		SeqNo: 5953131
Analyte		Result		PQL	SPK value	SPK Ref Val	% REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic		60.63		1.1	27.3	30.9	109	75	125	50.56	18.1	20

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

Customer: Amereco Inc.

Amereco Inc. 23090689

Project: 23.2078, Brickyard, Porter, IN

Work Order:

Analytical QC Summary Report

Wet Chemistry BatchID: R202207

See	Analytical Run S	ummary												
SABABBO PMLCSNS 3 9126123	SeqNo Sample ID		Type	Te	est Code	е Ва	atch	DF			Date An	alyzed		
SAMP	5948905 PMMBLK3	9/26/23	MBLK	PMOIST	Γ	R2	02207	1			09/27/2	2023		
\$494909 23090644-002B SAMP PMOIST R202207 1	5948906 PMLCSS3	9/26/23	LCS	PMOIST	Γ	R2	02207	1			09/27/2	2023		
SAMP PMOIST R20/2207 1 09/27/2023 SAMP PMOIST R20/220	5948907 PMLCSW3	9/26/23	LCS	PMOIST	Γ	R2	02207	1			09/27/2	2023		
SAMP	5948908 23090724-0	001B	SAMP	PMOIST	Γ	R2	02207	1			09/27/2	2023		
	5948909 23090644-0	001B	SAMP	PMOIS1	Γ	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1 09/27/2023 1 09/27/202	5948910 23090644-0	002B	SAMP	PMOIS1	Γ	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1 09/27/2023 PMOIST R202207 1	5948911 23090644-0	002BDUP	DUP	PMOIST	Γ	R2	02207	1			09/27/2	2023		
SAMP SAMP SAMP PMOIST R202207 1	5948912 23090644-0	003B	SAMP	PMOIST	Г	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1	5948913 23090644-0	004B	SAMP	PMOIST	Г	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1 09/27/2023 1 09/27/20	5948914 23090684-0	001B	SAMP	PMOIST	Г	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1 09/27/2023 1 09/27/20	5948915 23090688-0	001A	SAMP	PMOIST	Г	R2	02207	1			09/27/2	2023		
SAMP PMOIST R202207 1	5948916 23090689-0	001A		PMOIST	Г	R2	02207	1			09/27/2	2023		
SAMP														
SAMP														
SAMP														
SAMP														
SAMP PMOIST R202207 1 09/27/2023 SAMP PMOIST R202207														
SAMP PMOIST R202207 1 09/27/2023 SAMP PMOIST R202207 R202207 1 09/27/2023 SAMP PMOIST R202207 1 09/27/2023 SAMP PMOIST R202207														
Sample D Customer D SampType Units Result PQL SPK value SP														
Sample D Customer D SampType Units PQL SPK value Pg SPK value Sample D Customer D SampType Units Pg Sample D SampType Units Pg SampType Units Pg Shk value Pg S														
SAMP PMOIST R202207 1 09/27i/2023 SAMP PMOIST R202207 PMOIST R2022														
SAMP PMOIST R202207 1 09/27i/2023 SAMP PMOIST R202207 P														
SAMP														
SAMP PSOLID R202207 1 09/27/2023 SAMP R202207 1 09														
Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN SPK Ref Val														
Sample D: Customer D: SampType: Units: TestNo: Prep Date: Analysis Date: Run D: SeqN PMMBLK 9/26/203 9/27/2023 BALANCE_230926D 59489	3940929 23090004-0	0016	SAME	FSOLIL	,	I\Z	02207	ļ			09/21/2	.023		
PMMBLK3 9/26/23 ZZZZZ	QC Summary													
Analyte Result PQL SPK value SPK Ref Val % REC Low Limit Limit Ref Val %RPD Limit Qual Medical	Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Dat	te: Analys	is Date:		Run ID	:	Seql	
Percent Moisture ND 0.200	PMMBLK3 9/26/23	ZZZZZ	MBLK	wt%		D2974	9/26/20	23 9/	27/2023	ВА	LANCE_2	30926D	59489	
Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN	Analyte		Result		PQL	SPK value		% REC				%RPD		
PMLCSS3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Limit Limit Limit Limit RPD Ref Val % RPD Limit Qual Ref Val Percent Moisture 4.46 0.200 5 0 89.2 80 120 0 0 ** Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN PMLCSW3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low Limit Limit Limit Ref Val % RPD Ref Val % RPD Limit Qual Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN 23090644-002BDUP ZZZZZ DUP wt% D2974 9/26/2023 9/27/2023	Percent Moisture		ND		0.200								,	
PMLCSS3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val REC Low Limit High Limit RPD Ref Val RPD Limit Qual Value Percent Moisture 4.46 0.200 5 0 89.2 80 120 0 0 ** Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN PMLCSW3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val REC Low Limit High Limit Ref Val RPD Ref Val VRPD Limit RPD Limit Qual Percent Moisture 99.82 0.200 99.8 0 100 80 120 0 0 ** Sample ID: Customer ID: SampType: Units: <	Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Prep Dat	te: Analys	is Date:		Run ID	:	Seal	
Result PQL SPK value SPK value Ref Val WREC Low High Ref Val WRPD RPD Limit Ref Val WRPD Li	PMLCSS3 9/26/23							-						
Percent Moisture	Analyte				PQL	SPK value		% REC		High	RPD			
Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN PMLCSW3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low Limit Limit Limit Ref Val RPD RPD Limit Ref Val Qualityte Percent Moisture 99.82 0.200 99.8 0 100 80 120 0 0 ** Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN 23090644-002BDUP ZZZZZ DUP wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low Limit Limit Limit Ref Val RPD RPD Limit Ref Val Limit Ref Val RPD Limit Ref Val Qualityte	Percent Moisture		4.46		0.200	5	0	89.2				0	3	
PMLCSW3 9/26/23 ZZZZZ LCS wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low Limit Limit Ref Val RPD Ref Val WRPD Limit Qual Percent Moisture 99.82 0.200 99.8 0 100 80 120 0 0 ** Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN 23090644-002BDUP ZZZZZ DUP wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value % REC Low Limit Limit Ref Val % RPD Ref Val Qual	Sample ID:	Customer ID:	SampType:	Units:		TestNo:	Pren Dat		is Date		Run ID	-	Seal	
Analyte Result PQL SPK value Ref Val % REC Limit Limit Limit Ref Val % RPD Limit Quality Percent Moisture 99.82 0.200 99.8 0 100 80 120 0 0 * Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN 23090644-002BDUP ZZZZZ DUP wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low High RPD Limit RRPD RPD Limit Quality	PMLCSW3 9/26/23							•						
Sample ID: Customer ID: SampType: Units: TestNo: Prep Date: Analysis Date: Run ID: SeqN 23090644-002BDUP ZZZZZ DUP wt% D2974 9/26/2023 9/27/2023 BALANCE_230926D 59489 Analyte Result PQL SPK value SPK Ref Val % REC Low High RPD KRPD Limit Value Ref Val % REC Limit Ref Val % RPD Limit Value Ref Val % REC Limit Ref Val % RPD Limit Value Ref Val % RPD Ref Value R	Analyte		Result		PQL	SPK value		% REC				%RPD	RPD Limit Qu	
23090644-002BDUP	Percent Moisture		99.82		0.200	99.8	0	100	80		0	0	3	
23090644-002BDUP	Sample ID:	Customer ID:	SampTvne [.]	Units:		TestNo:	Prep Dat	te: Analys	is Date		Run ID	:	Seal	
SPK Low High RPD RPD RPD Limit Qua	23090644-002BDUP						'	,						
Percent Moisture 19.57 0.200 0 0 0 19.38 0.976 20 *	Analyte				PQL	SPK value		% REC				%RPD		
	Percent Moisture		19.57		0.200	0	0	0	0	0	19.38	0.976	20	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

E - Value above quantitation range